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Abstract

The relatively new k Nearest Centroid Neighbor (k-NCN) decision rule uses an interesting concept of surrounding neighborhood, that is, such a neighborhood which takes into account not only the proximity of neighbors but also their spatial location.  In the paper we propose a new decision rule, called k Near Surrounding Neighbors (k-NSN), which “improves” the neighborhood used in k-NCN with respect to both mentioned aspects.  We tested several methods, k-NN included, each in a multidecision and in two binary decomposition schemes, on a few UCI datasets and a large ferrite core dataset, to show attractiveness of the presented concept in applications where the prediction accuracy is of utmost importance.
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1. Introduction

The concept of neighborhood has widely been used in a large number of computer vision, pattern recognition, computational geometry and image processing problems.  The neighbors of input point q in a d-dimensional space can loosely be viewed as the set of points in the proximity of q.  Neighborhood can intuitively be understood as an item subject to two complementary constraints.  Firstly, the neighbors of point q should be as close to it as possible.  Secondly, the neighbors should also be located as symmetrically around q as possible.  The well-known k-Nearest Neighbor (k-NN) decision rule ignores the second aspect of neighborhood.  Although the k-NN rule is optimal in the asymptotic case (i.e., tends towards the Bayes error when the size of the set tends to infinity), in case of finite sets it is no longer optimal, which becomes an especially acute problem when the number of samples is not enough compared to the set dimensionality [1].

A number of approaches to mitigate this problem has been proposed.  Multiple edited NN rules (e.g. [2], [3]), weighted [4] and fuzzy k-NN rules [5], and optimal distance measures [6] should be mentioned.  Finally, several alternative neighborhood definitions have been proposed.

2. The k Nearest Centroid Neighbors (k-NCN) decision rule

The idea of Chaudhuri [7], later developed into a decision rule [8], seems to be an interesting attempt to focus on neighbors which are located not only close enough to the given sample but also possibly homogeneously distributed around the sample.  It is the concept of Nearest Centroid Neighborhood (NCN).  The k nearest centroid neighbors of query point q are obtained as follows:

– first neighbor of q is its nearest neighbor, n1;

– the i’th neighbor, ni, 

, is such that the centroid (i.e., the mean) ci of this and previously selected neighbors, n1, ..., ni-1, is the closest to q.
Because of the centroid criterion, the spatial distribution of neighbors is taken into account.  On the other hand, the incremental nature of the way in which successive neighbors are obtained guarantees their proximity to query sample q.

Experiments conducted by S(nchez et al. ([8], [9]
) confirm attractiveness of the k-NCN decision rule, especially in applications where classification accuracy is more important than classification time.  The k-NCN usually outperformed the standard k-NN rule.  Just like for k-NN, also for k-NCN the number of neighbors must be estimated with respect to the training set, preferably with the leave-one-out method.

3. Pairwise decomposition

Jóźwik and Vernazza [10] proposed a decomposition scheme for the k-NN rule. Instead of dealing with one c-class problem, they decomposed it into 
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 two-class problems.  The classified object is submitted to all the component classifiers and the final decision is obtained via simple voting (see Fig. 1).  Such an ensemble of k-NN classifiers may be called pairwise k-NN, but it would be more precise to refer to the scheme after the authors’ intials: J-V.
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Fig. 1. The general scheme of a pairwise classifier in the 
Jóźwik-Vernazza version; c – the number of classes.
A very similar idea, Error Correcting Output Codes (ECOC), was proposed in the early 1990’s by Dietterich and Bakiri [11].  Both variants usually give a substantial improvement in accuracy, but only after separate learning for each of the dichotomizers (standardization, selection of features and k’s).  If no separate learning for component classifiers is done, we generally cannot expect any improvement.  It is especially obvious for the parallel net of 1-NN classifiers.  Let us quote Bay [12]: Kong and Dietterich (1996) [13] concluded that Error Correcting Output Coding (ECOC), a method of combining classifiers by decomposing multi-class problems into multiple two-class problems, will not improve classifiers that use local information because of high error correlation.  For example, with the NN classifier we predict the class of the closest pattern.  This pattern is the same in all of the two-class problems, and hence if it gives an incorrect prediction, all the predictions in the ECOC ensemble will be incorrect.

A deficiency of the J-V scheme consists in presenting a test sample to all the pairwise classifiers, also those which are completely irrelevant.  The irrelevant component classifiers add noise to the voting process.  The problem was noticed by Moreira and Mayoraz [14] and an interesting solution was proposed.  In the crisp version (i.e., with hard class labels) their so-called „correcting classifiers” decomposition submits a test sample q only to some dichotomizers, namely those that distinguish between classes which are more probable to be q’s proper label than the other classes.  An example to make it more clear: the test sample q is submitted e.g. to the dichotomizer (class 1 vs. class 2), if the dichotomizer ((class 1 and class 2) vs. (all the other classes)) assigns q to the (meta-)class (class 1 and class 2).  In this paper we denote this scheme with M-M.  The M-M scheme has been used for decision trees [14] and multi-layer perceptrons [15].  

Here we test the J-V and M-M decomposition schemes with the k-NCN and new k-NSN (to be described in the next chapter) rules, which, as we believe, have not been tested before.  A practical difficulty with those rules (in both original and pairwise version) are, however, very high costs of feature selection for this classifier as the accuracy estimator.  We, therefore, suggest performing the feature selection session on the basis of the conventional k-NN rule.  Another option is trying a non-conventional approach to feature selection, e. g. Bay’s MFS [12].

4. The k Near Surrounding Neighbors (k-NSN) decision rule

The heuristic nature of k-NCN encourages us to search for other decision rules, which would take into account both described aspects of neighborhood.  As the centroid criterion from k-NCN seems really good, we decided not to change it but only optimize the set of neighbors according to both criteria: one related to proximity and the distance of the neighbor set’s centroid to the test sample.

	Find k nearest centroid neighbors of a test sample q.  Call the neighbors n​1, ..., nk.  Call their centroid c.

For counter = 1 to ITERATIONS do

{

Select a random neighbor ni, 
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Select a random sample s, such that 
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, where nfarthest is the k’th, according to the distance, neighbor of q

If 
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Let tentative_c = centroid(n1, ..., ni-1, s, ni+1, ..., nk)

If 
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{

Let ni = s
Let c = tentative_c
}

}

}

Return the set of neighbors n1, ..., nk.


Fig. 2. The k Near Surrounding Neighbors (k-NSN) decision rule.

Our classifier first searches for k NCN neighbors of the test sample and then in a loop tries to exchange some neighbors with other samples, which are both closer and better in the sense of the centroid criterion to the test sample.

More precisely, the proposed decision rule, which we call k Near Surrounding Neighbors (k-NSN), operates as described in Fig. 2.

Note it is a random mutation hill climbing algorithm; the neighbor exchanging idea is analogous to the one applied by Skalak to prototype selection [16].

5. Experimental results

A comparison of described methods on several real data sets has been made.  One dataset concerned quality control of ferrite cores [17] and five datasets came from the Machine Learning Dataset Repository at the University of California, Irvine [18].  Before further processing, data were standardized in all experiments.  We always used the Manhattan (city-block) distance.  Ties were broken in favor of the class with the lowest label number.
  The optimal k for k-NN, k-NCN and k-NSN was searched from 1 through 30.  If the minimal error was reached for several values of k, the largest of them was selected as this could be expected to yield more stable error estimations.

In the first experiment, we compared the presented decision rule with k-NN and k-NCN on the UCI sets: bupa, glass, iris, pima and wine.  None of those datasets contains missing values or nominal features.  As the sets are rather small, we decided not to test the pairwise versions of the classifiers.  In all tests 5-fold cross validation was repeated 5 times.  No feature selection was performed.

Table 1a presents average errors (in per cent) and Table 1b shows standard deviations of the errors.

	dataset
	k-NN
	k-NCN
	k-NSN, 100
	k-NSN, 500
	k-NSN, 2500

	bupa
	35.54
	30.38
	30.90
	31.48
	33.16

	glass
	28.80
	29.92
	28.62
	28.06
	28.06

	iris
	5.87
	4.40
	4.67
	4.93
	4.93

	pima
	24.73
	24.48
	24.22
	24.95
	25.42

	wine
	3.04
	3.16
	2.82
	2.26
	2.37

	mean
	19.60
	18.47
	18.25
	18.34
	18.79


Table 1a. Average errors (in %) of k-NN, k-NCN and the proposed k-NSN 
with varying number of mutations on selected UCI datasets.
	dataset
	k-NN
	k-NCN
	k-NSN, 100
	k-NSN, 500
	k-NSN, 2500

	bupa
	7.30
	5.10
	4.89
	5.23
	5.43

	glass
	7.08
	6.00
	5.38
	5.46
	5.30

	iris
	3.37
	3.43
	3.47
	3.62
	3.74

	pima
	4.16
	3.15
	3.02
	3.25
	3.86

	wine
	2.71
	3.21
	2.83
	2.45
	2.41


Table 1b. Standard deviations (in %) of k-NN, k-NCN and the proposed k-NSN 
with varying number of mutations on selected UCI datasets.
As Table 1a and 1b show, both k-NCN and k-NSN rules have lower errors and lower error variance than the k-NN on the UCI datasets.

The ferrite core dataset used in the second experiment has already been used in a number of experiments (e.g. [19], [17]).  The image of the inspected ferrite core was analyzed pixel by pixel, so the objects were pixels of a ferrite core surface.  Eight classes of pixels were considered (good part, background and six types of defects).  Each object was characterized by 30 features being functions defined on its square neighborhood.

For the test, ten unbalanced partitions have been made.  The training sets had 1400 objects while the test sets had 4503 objects.  First six classes in the training sets were represented by 200 samples, the remaining two classes had 100 samples.  The numeric forces of classes in the test sets were: 1182, 124, 279, 995, 1049, 688, 81 and 105 objects.  The k-NSN classifiers, as randomized algorithms, in the scheme without decomposition, were tested 10 times for each partition.  For speed reasons, the decomposition versions of the k-NSN classifiers were tested only once for each partition.

Table 2 presents results of the tested methods on the ferrite data.  No feature selection was performed.

	classifier
	no decomposition
	pairwise decomposition

	
	
	Jóźwik-Vernazza
	Moreira-Mayoraz

	
	error
	error
	error

	k-NN
	10.96
	10.51
	10.24

	k-NCN
	10.18
	9.66
	9.76

	k-NSN, 100 mut.
	10.05
	10.69
	9.60

	k-NSN, 500 mut.
	9.98
	9.58
	9.42

	k-NSN, 2500 mut.
	9.93
	9.00
	9.12


Table 2. Ferrites, errors in %.

It is interesting to know how scattered are NCN neighbors according to the distance to the query sample.  A measure of such distribution may be the number of “conventional” (i.e. distance based) neighbors within radius associated with the farthest among the k nearest centroid neighbors.  We have gathered the counts of nearest neighbors within the k-NCN neighborhood for a single partition of the ferrite data, the average number of nearest neighbors for k varying from 3 through 10 is presented at Fig. 3.
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Fig. 3. The average number of nearest neighbors within the 
radius of the farthest among the k NCN neighbors, k=3..10.  Ferrite data.

The nearest neighbor counts at Fig. 3 are surprisingly high.  Within the radius of the ball induced with 5 NCN neighbors there are on average over 53 NN’s, the ball induced with 10 NCN neighbors already contains about 140 distance based neighbors.  This phenomenon suggests that the importance of neighbors’ proximity could probably be overrated.  Moreover, if for a given NCN neighborhood so many samples are located closer to the query than the most distant NCN neighbor, then there may exist many ways to “improve” the set of neighbors which are to predict the label of the query sample.  The introduced k Near Surrounding Neighbors rule is a simple proposal following this avenue.

6. Final words

The goal of our work was to create a neighborhood with respect to both criteria bound with the notion of nearest centroid neighborhood.  If, colloquially speaking, the proximity and the homogeneity of the set of neighbors used by the k Nearest Centroid Neighbors rule are „good” enough to defeat the old but strong k-NN, then there is a temptation to try to find even closer and more symmetrically located neighbors.  We thought that the k-NCN set of neighbors would be a good start and the idea was to swap neighbors in a way not allowing a „step back”.

The presented k Near Surrounding Neighbors decision rule offered a lower error rate that its predecessor, the k-NCN, on the large ferrite core dataset, but on the UCI datasets the results were rather comparable.  The experiments show that both classifiers easily outperform the k-NN rule, though.  The ferrite core dataset also confirms that the multiclass task decomposition is an attractive technique for increasing accuracy, and that the relatively new Moreira-Mayoraz decomposition idea may win with the well-known Jóźwik-Vernazza pairwise coupling technique.
The experiments pose several interesting questions:

1. Does the centroid criterion reflect the neighborhood homogeneity really well?  (Note that a set of points (=neighbors) on a line could have a gravity center exactly at test sample q, but intuitively we would not call this set lying symmetrically around q in a multidimensional space.)

2. Even with the centroid criterion in mind, are there possible other efficient methods of optimizing the neighborhood?

3. What about voting over several (different) surrounding neighborhoods?

4. For a given set, is it possible to predict if a given method succeeds or fails?

Of course, the last question is of much more general importance.
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� In our experiments on the datasets described later in the paper, the better of the two modifications to the k-NCN rule proposed in [9], offered a notably worse accuracy than the original rule.


� Ties are often broken in favor of the class most heavily represented in the reference set.  On the ferrite data however it did not matter since the classes were ordered from the largest to the smallest.





1
11

_1083591937.unknown

_1083599278.unknown

_1095352549.unknown

_1083592178.unknown

_1083592439.unknown

_1076571990.unknown

