
Reducing the computational demands for

nearest centroid neighborhood classifiers

Szymon Grabowski

Computer Engineering Department, Technical University of Lodz,
Al. Politechniki 11, Lodz, 90-924

SGrabow@kis.p.lodz.pl

Abstract. The k Nearest Centroid Neighbor (k-NCN) is a relatively
new powerful decision rule based on the concept of so-called surround-
ing neighborhood. Its main drawback is however slow classification, with
complexity O(nk) per sample. In this work, we try to alleviate this dis-
advantage of k-NCN by limiting the set of the candidates for NCN neigh-
bors for a given sample. It is based on an intuition that in most cases
the NCN neighbors are located relatively close to the given sample. Dur-
ing the learning phase we estimate the fraction of the training set which
should be examined only to approximate the “real” k-NCN rule. Simi-
lar modifications are applied also to ensemble of NCN classifiers, called
voting k-NCN. Experimental results indicate that the accuracy of the
original k-NCN and voting k-NCN may be preserved while the classifi-
cation costs significantly reduced.

1 Introduction

The standard k Nearest Neighbors (k-NN) rule is known for half a century, but
still there are few classifiers superior in terms of accuracy. One of those rare
successful proposals is the idea of k Nearest Centroid Neighbors (k-NCN) [9].
As in k-NN, a set of k neighbors of a test sample is selected, and the class with
the greatest number of votes among those neighbors defines the output label.

The k nearest centroid neighbors of a query sample q are obtained as follows:
the first neighbor of q is its nearest neighbor, n1; the i-th neighbor, ni, i ≥

2, is such that the centroid (i.e., the mean) ci of this and previously selected
neighbors, n1, . . . , ni−1, is the closest to q.

Several works have pointed out high accuracy of k-NCN [9, 10, 2, 4]. Its
main drawback of k-NCN is however slow classification, with complexity O(nk)
per sample. Finding each successive NCN neighbor requires examining all the
samples from the learning set, which is often prohibitively costly.

In this paper, we propose a modified decision rule, which limits the set of the
candidates for NCN neighbors for each sample. The rate of such reduction and
hence the potential classification speedup rate is determined during the learning
phase, i.e., is known before the actual classification. We adapt the idea not only
to the original k-NCN, but also to its voting variant proposed in our earlier work
[5, 4].



2 The Proposed Algorithms

Intuitively, the NCN neighbors should be located close to the query sample. How-
ever, the experimental results are somewhat counterintuitive. In [5], we counted
the number of distance based neighbors within radius associated with the far-
thest among the k nearest centroid neighbors. Those nearest neighbor counts are
surprisingly high: for example, for a single partition of the Ferrite dataset (to
be described in Section 4), within the radius of the ball induced with 10 NCN
neighbors there are on average about 140 distance based neighbors. Similar re-
sults were obtained on other datasets. This phenomenon has two consequences.
First, it suggests that the importance of neighbors’ proximity could be overrated.
Moreover, if for a given NCN neighborhood so many samples are located closer
to the query than the most distant NCN neighbor, then there may exist many
ways to “improve” the set of neighbors to predict the label of the query sample
[5]. The second conclusion is less optimistic: if NCN neighbors are often quite far
from the tested sample, then there is not much hope for a significant speedup of
the search process. We however decided to take a closer look at this question.

A basic idea for speeding up the classification of query sample q is to sort
the learning set samples according to their distance to q, and then look for NCN
neighbors only in a fraction of the learning set containing the closest samples. But
what fraction? Datasets vary a lot in their characteristics and consequently any
fixed percentage of samples (significantly less than 100%) may be inappropriate
for many real datasets. Regarding that, it is advisable to determine the fraction
in the learning phase.

The simplest idea is to find the farthest of k NCN neighbors for each sample
in the learning set in a leave-one-out manner, calculate its rank according to the
distance (for example, the third nearest neighbor would get rank 3) and finally
find the maximum m over all those ranks. The ratio m/(n − 1), where n is the
learning set count, is the desired fraction. Such an idea is however sensitive to
the presence of such atypical training samples for which at least one of its k
NCN neighbors has a large rank.

We devised a more robust variant of the presented idea. Let us define mrobust

rank as the minimal value such that for, e.g., 95% samples from the training
set the farthest of their k NCN neighbors has its distance rank not exceeding
mrobust. Now the fraction of closest samples used in the classification phase
will be equal to mrobust/(n − 1), which of course never exceeds the previously
discussed fraction m/(n − 1). This variant will be called limited k-NCN v1 in
the test section.

Another extension is possible. Instead of finding the proper rank for all k
neighbors, such a parameter may be estimated from the training set for each i-
th neighbor (i=1, . . . , k) separately. We denote this variant with limited k-NCN

v2.
In an earlier work [4], we proposed the voting k-NCN classifier, which is an

ensemble of k-NCN components with the decision obtained via plurality voting.
The desired diversity in the ensemble is achieved by taking varying counts of
neighbors k for the component k-NCN classifiers. The component classifiers are



trained on random partitions of the whole learning set. The learning set is divided
L times at random into halves, and one half is used as the “real” training set and
the other as the validation set. In this way, L values: k1, . . . , kL, are obtained.
The classification stage works with the ki-NCN components, which refer (as
opposed to the training phase) to the whole learning set. We set L to 10 in our
experiments.

Adapting the neighborhood limiting ideas to the voting k-NCN is straight-
forward. The rank mrobust is now defined as the minimal value such that for,
e.g., 95% samples from the training set the farthest of their kmax NCN neighbors
has its distance rank not exceeding mrobust, where kmax denotes the maximum
among the k1, . . . , kL values. In this way, the variants v1 and v2 for limited vot-
ing k-NCN can be defined analogously to the respective variants for the limited
k-NCN.

3 Implementation Issues

The set of candidate neighbors for a given query sample q may be obtained via
sorting the training set samples according to the distance to q, but in fact full
sorting is not necessary. In the limited k-NCN v1, it is enough to divide the
learning set into two disjoint subsets of specified size, one such that any sample
from this subset is located in the closer or equal distance to q than any sample
from the other subset. The well-known randomized-select algorithm [1], based
on quick sort, serves this purpose.

In the limited k-NCN v2 variant, more “sortedness” is required for the train-
ing set. For simplicity, we decided to sort fully the subset of mrobust · n/(n − 1)
nearest samples to q, where mrobust is the minimal value such that for f=95%
samples from the training set the farthest of their k NCN neighbors has its dis-
tance rank not exceeding mrobust. As it appears, the computational increase in
this phase of classification in v2 is more than compensated with the savings in
distance calculations in the NCN search phrase.

During our experiments we noticed quite a surprising phenomenon. A very
simple distance calculation trick, namely: rejecting the candidate sample if al-
ready after the first half of examined features it may be concluded the sample
is located too far (a trick viable for both k-NN and k-NCN), had a major speed
impact for the used datasets. For example, for Ferrite dataset and k-NCN, in
about 90% of cases the given criterion was satisfied.

Another practical trick for k-NCN-like classification is to avoid multiplica-
tions/divisions as the real centroids of found-so-far neighbors are not actually
necessary. Instead of the centroid of i neighbors, i = 1 . . . k, we can store their
sum (which obviously is the centroid vector multiplied by i) and consequently
refer to the query vector multiplied by the same i. In this way, all the distances
are scaled, which does not hinder finding the NCN neighbors. Additionally, some
temporary values may be cached in k-NCN routines for further speedup of a few
percent.



4 Experimental Results

We conducted experiments on two real datasets: one concerning quality control
of ferrite cores [7, 8] and one taken from a remote sensing application [11].
For Ferrite dataset ten unbalanced partitions were made: 1400 samples (training
sets) and 4503 samples (test sets). The dataset has 30 features and 8 classes. The
available remote sensing dataset contained 5124 samples (5 classes, 9 features).
Again, ten partitions were used: the learning sets had 1250 samples each time.

The tested classifiers were k-NN, k-NCN, voting k-NCN and the proposed
limited k-NCN and limited voting k-NCN in two variants: v1 and v2. As we
have mentioned the significant impact of the two simple distance calculation
tricks, we decided to compare the classifiers in two implementations: plain and
fast (both described tricks used for k-NCN based classifiers, and only the former
one for k-NN). For the voting k-NCN variants, we present the results of the
fast implementations only. Learning sessions are identical for k-NCN and its
“limited” variants, and so is for the voting k-NCN case. That means the learned
values of k are identical for a given task, which is a potential deficiency of our
idea.

The average value of k for k-NN over 10 partitions was 4.5 for Ferrites and
10.8 for Remotes. For k-NCN, the respective values of k were 5.9 and 14.2.

In limited k-NCN v1, it was enough to consider on average 16.3% of all sam-
ples for NCN candidates for Ferrites. The respective fraction for Remotes was
45.1%. In v2, the fractions for individual i-th (i = 1 . . . k) neighbors vary of
course, but on average are much lower. Taking the average fraction for each par-
tition, and again the average over all the partitions, we obtain 5.0% for Ferrites
and 14.3% for Remotes.

All the program codes were compiled in Delphi 3.0. The tests were run on
an Athlon 2400+ machine with 256 MB RAM under Windows 98 SE. Each 10-
partition series was tested several times and the best total timing was taken
for the comparison. Tables 1 and 2 present average errors and timings for both
datasets. The rightmost column indicates the slowdown factor in comparison to
the fast k-NN implementation.

It is easy to notice that the limited k-NCN v2 is much faster than original
k-NCN (1.73x for Ferrites and 2.69x for Remotes, comparing the fast imple-
mentations) and also achieves (perhaps accidentally) slightly greater accuracies.
The results are quite stable over the partitions showing that the ad hoc fraction
parameter f=95% was quite a good choice. The limited k-NCN v1 variant was
less beneficial, anyway in comparison with original k-NCN it still looks competi-
tively. It is also noteworthy how profitable simple implementation tricks may be;
a fair speed comparison of original k-NN and k-NCN was one of the purposes for
this work. Nevertheless, k-NN is still much faster than any of the k-NCN based
classifiers, so it depends on the application whether the expected accuracy boost
with limited k-NCN is worth the additional classification time. This question
pertains to the limited voting k-NCN as well, where further improvements in
accuracy also imply classification 7-9x slower than k-NN. Still, the v2 variant



Table 1. Ferrites. Classification errors and timings

classifier error (%) classif. time (s) time rel. to k-NN, fast

k-NN, plain 10.96 2.50 2.66

k-NN, fast 10.96 0.94 1.00

k-NCN, plain 10.18 19.57 20.82

k-NCN, fast 10.18 5.99 6.37

limited k-NCN v1, plain 10.17 6.33 6.73

limited k-NCN v1, fast 10.17 4.33 4.61

limited k-NCN v2, plain 10.10 4.30 4.57

limited k-NCN v2, fast 10.10 3.47 3.69

voting k-NCN, fast 9.69 21.70 23.11

limited voting k-NCN, v1, fast 9.66 12.18 12.97

limited voting k-NCN, v2, fast 9.68 6.67 7.10

of limited voting k-NCN is about 3x faster than the original rule at a similar
accuracy rate.

Table 2. Remotes. Classification errors and timings

classifier error (%) classif. time (s) time rel. to k-NN, fast

k-NN, plain 21.63 0.38 1.36

k-NN, fast 21.63 0.28 1.00

k-NCN, plain 20.77 7.99 28.54

k-NCN, fast 20.77 3.98 14.21

limited k-NCN v1, plain 20.78 4.40 15.71

limited k-NCN v1, fast 20.78 2.78 9.93

limited k-NCN v2, plain 20.67 2.02 7.21

limited k-NCN v2, fast 20.67 1.48 5.29

voting k-NCN, fast 20.11 7.59 27.50

limited voting k-NCN, v1, fast 20.10 5.37 19.44

limited voting k-NCN, v2, fast 20.19 2.54 9.21

The appropriate value of the fraction f can possibly be estimated from the
training set, nevertheless after the preliminary attempts we do not expect a
breakthrough in accuracy or speed. Some more experiments are required with
the randomized-select routine; currently it is implemented in the simplest form.

5 Conclusions and Future Plans

We presented the idea of limiting the set of neighbors for k-NCN decision rules.
In practice, such a limitation does not change much in the classification, except
for a significant speed improvement. We also presented several simple but sur-
prisingly efficient implementation tricks for NN and NCN based classifiers. As



the next step, we intend to perform the comparison tests on a broader collection
of datasets. Of interest should also be to incorporate the presented ideas into
several cascade classifiers [4], where NCN components are expected to be trig-
gered on relatively few samples only. It is our hope that the modified schemes
will become faster, but the classification accuracy will be preserved.

References

[1] T. H. Cormen, Ch. E. Leiserson and R. L. Rivest: Introduction to Algorithms, MIT
Press, 1990.

[2] Sz. Grabowski: Experiments with k-NCN decision rule, IX Konferencja Sieci i Sys-
temy Informatyczne (9th Conf. “Networks and IT Systems”), Lodz, Poland, 2001,
pp. 307–317.

[3] Sz. Grabowski: A family of cascade NN-like classifiers, Proc. 7th Int. IEEE Conf.
TCSET’2002, Lviv-Slavsk, Ukraine, Feb. 2002, pp. 223–225.

[4] Sz. Grabowski, A. Jozwik and C.-H. Chen: Nearest neighbor decision rule for pixel
classification in remote sensing, a chapter in Frontiers of Remote Sensing Info Pro-
cessing, ed. S. Patt, World Scientific Publishing Co. Pte. Ltd., Singapore, July 2003.

[5] Sz. Grabowski: A family of cascade NN-like classifiers, Proc. 7th Int. IEEE Conf.
on Experience of Designing and Application of CAD Systems in Microelectronics
(CADSM), Lviv-Slavsk, Ukraine, Feb. 2003, pp. 503–506.

[6] Sz. Grabowski: Towards decision rule based on closer symmetric neighborhood,
Biocybernetics and Biomedical Engineering, Vol. 23, No. 3, pp. 39–46, July 2003.

[7] A. Jozwik, L. Chmielewski, W. Cudny and M. Sklodowski: A 1-NN preclassifier
for fuzzy k-NN rule, Proc. 13th Int. Conf. on Pattern Recognition, vol. IV, track D,
Parallel and Connectionist Systems, Vienna, Austria, 1996, pp. 234–238.

[8] M. Nieniewski, L. Chmielewski, A. Jozwik and M. Sklodowski: Morphological detec-
tion and feature-based classification of cracked regions in ferrites, Machine Graphics
and Vision, Vol. 8, No. 4, 1999.

[9] J. S. Sanchez, F. Pla and F. J. Ferri: On the use of neighbourhood-based non-
parametric classifiers, Pattern Recognition Letters, Vol. 18, No. 11–13, pp. 1179–
1186, 1997.

[10] J. S. Sanchez, F. Pla and F. J. Ferri: Improving the k-NCN classification rule
through heuristic modifications, Pattern Recognition Letters, Vol. 19, No. 13, pp.
1165–1170, 1998.

[11] S. B. Serpico, F. Roli: Classification of multisensor remote sensing images by
structured neural networks, IEEE Trans. on Geoscience Remote Sensing, Vol. 33,
No. 3, pp. 562–578, 1995.


