A family of cascade NN-like classifiers
Szymon Grabowski
Abstract – We propose a family of two-stage classifiers with one common feature: the first stage classifier is an ensemble of classifiers working in parallel and the prediction in this stage is considered confident (and thus final) if and only if all the component classifiers return the same answer.  If there is no consensus, the sample is sent to the second stage with a costlier classifier.  An attractive accuracy-speed tradeoff of the presented algorithms is experimentally confirmed.

Keywords – nearest neighbor, cascade classifiers, surrounding neighborhood.
I. Introduction

The two main criteria for estimating a classifier’s merits are its accuracy (=prediction, skill of generalization) and classification speed.  It is often more convenient to speak of classifier’s error instead of its accuracy.  The error has two components: average error (called bias) for multiple possible training/test sets in a given task, and error variance.  Of course, ideally one would wish to minimize both error components.

One of respected major concepts to increase accuracy and/or minimize error variance (i.e. generate classification models which are more trustworthy to be safe from excessive overfitting) is the idea of combining classifiers (for a survey see e.g. [3, 2]).

Although the body of research on combining classifiers is very large (growing rapidly since the early 1990’s), some avenues are still underexplored.  One of such approaches to combining classifiers appears to be the concept of cascade classifiers.

The basic idea is very simple.  The classification of a sample is performed in up to a few stages.  The first classifier in a cascade is usually the simplest and the fastest one in the ensemble.  If its prediction is confident enough, it is accepted.  If not, the sample is passed the the second stage, with a more complex and sophisticated model etc. [1, 8].  In practice, there are usually only two or three such stages.  A difficult question is how to choose the criterion for accepting or rejecting the response of the model in a given stage.

In this paper we present a family of two-stage classifiers, in which the model in the first stage is an ensemble of several homogenous classifiers working in parallel.  If all their decisions agree, the classification of a given sample is done, otherwise a more complex classifier is triggered.  To understand the design of the proposed classifiers, the reader must be acquainted with several preliminary ideas, some of which were elsewhere presented by the author.  They are all described in Section II.


II. Preliminary concepts
The standard k Nearest Neighbors (k-NN) rule is known for half a century, but still there are few classifiers which can be expected to achieve greater accuracy.  One of those rare successful proposals is the idea of k Nearest Centroid Neighbors (k-NCN) [10].  As in k-NN, a set of k neighbors of a test sample is selected and the class with the greatest numbers of votes among those neighbors specifies the output label for the test sample.

The k nearest centroid neighbors of a query sample q are obtained as follows:

– first neighbor of q is its nearest neighbor, n1;

– the i’th neighbor, ni, 
[image: image1.wmf]2

³

i

, is such that the centroid (i.e. the mean) ci of this and previously selected neighbors, n1, ..., ni-1, is the closest to q.

Because of the centroid criterion, the spatial distribution of neighbors is taken into account.  On the other hand, the incremental nature of the way in which successive neighbors are obtained guarantees their proximity to the query sample q.

Experiments conducted by Sanchez et al. [10], [11] and the author [6] confirm attractiveness of the k-NCN decision rule in applications where classification accuracy is of primal importance.  The k-NCN usually outperforms the standard k-NN rule.  Just like for k-NN, also for k-NCN the number of neighbors must be estimated with respect to the training set, preferably with the leave-one-out method.

In [6] we proposed a heuristic modification to k-NCN, called k Near Surrounding Neighbors (k-NSN) decision rule.  The k-NSN first finds k NCN neighbors and then in a loop tries to replace some of them with other (randomly selected) samples having in mind two aspects: neighbors’ proximity and their “surroundness” measured by the described centroid criterion.  A replacement is performed if the new sample is not farther to q then the sample which is about to be removed, and also if the distance of the centroid of the new set of neighbors to q is closer than previously.  The k-NSN rule depends on the numer of so-called mutations (replacement attempts), which is a free parameter.

Another concept we have to remind is voting over several k-NN neighborhoods, with varying values of k [4].  Since the necessity for selection of the number of neighbors k is some problem to original k-NN, the voting k-NN finds several k’s during the training session, and during the classification performs majority voting with k-NN rules based on all those k’s.  The component k-NN classifiers are trained on random partitions of the whole learning set.  Two properties of such a classifier have to be stressed.  First, from a point of view it is an ensemble of classifiers working in parallel and like for other classifiers from this family, the noise in training data is expected to be smoothed out during the voting.  Second, as opposed to most ensembles of parallel classifiers, the classification speed of voting k-NN is only slightly lower than the speed of its baseline classifier, i.e. plain k-NN.  A deficiency of voting k-NN is the increase in training costs.

By analogy, voting k-NCN and voting k-NSN rules can be defined.

Finally, we have to describe briefly the random mutation hill climbing (RHMC) sample set reduction algorithm by Skalak [12].   A reduction of the training set means to replace the original (usu. large) set with a smaller, representative one.  Skalak’s idea is extremely simple.  First, h samples from the training set are taken at random, without replacement.  They form the current reduced set.  The accuracy of the reduced set with 1-NN rule is estimated (with reference to the whole training set).  Then, in a loop, m „mutation” attempts are per​formed.  A single mutation consists in se​lecting one random sample from the current reduced set and one random sample from the remaining samples.  If ex​changing those samples (i.e. removing one from the reduced set and at the same time adding the selected sample) increases the estimated accuracy, the mutation is accepted.  Otherwise, the reduced set remains intact.  A trivial observation is that each run of Skalak’s routine may produce different reduced sets.  Note also that h and m are free parameters of the routine.

III. Proposed cascade classifiers
Since k-NCN and k-NSN, as well as their voting variants, offer high classification accuracy, they are suitable candidates for the second phase in cascade classifiers.  Below we present several cascade schemes using k-NCN or k-NSN in the second stage.

A cascade classifier with and ensemble of 
Skalak’s reduced sets and k-NCN

The main drawback of the k-NCN and k-NSN rules is the slowness of their classification.  The cost for classifying a single sample is 
[image: image2.wmf](

)

kdn

O

, which contrasts with the complexity close to 
[image: image3.wmf](

)

dn

O

 for k-NN.  Our goal was to devise a classifier which would be faster than k-NCN, but would offer similar (or better) accuracy.

For the currently presented scheme, the k-NCN was chosen as the model for the second phase.  The first phase classifier must be significantly faster then.  We decided to use an ensemble of L Skalak’s reduced sets with 1-NN rule.  The majority voting over multiple reduced sets as a technique for improving classification accuracy was presented and successfully tested by Skalak himself [13].  Interestingly, such a construction enables a simple criterion for testing prediction confidence: the decision from the first phase will be accepted if and only if all components (i.e. reduced sets with 1-NN) agree in their prediction.  We are not aware of application of such an idea before.

Formally, the whole scheme is presented at Fig. 1.

It should be noted that if errors committed by individual classifiers D1, ..., DL are independent and the error probability for each classifier is the same and equal to p, then the probability that L identical labels output from D1, ..., DL​ are erroneous is not greater than pL (in fact, equal to pL in a two-class case and maybe lower, if the number of classes exceeds two), which, assuming a little value of p, converges quickly to zero with growing number of component classifiers.  Alas, the independence of components is not met in practice, which may be explained colloquially: “hard” samples are usually hard to all component classifiers.  However, intuitively, the probability of an erronous vote of all components in an ensemble must be small, if the components were trained separately and their training sessions did not involve reviewing too many candidate models.

Learning (L) 

1. Generate independently L classifiers D1, ..., DL with reference to the given set S.  Additionally, let D1, ..., DL​ be based on Skalak’s reduced sample sets and use 1-NN rule.

2. Find the optimal k for the k-NCN rule on set S.

Classification of sample q
1. Find labels lq(i), i = 1..L, to sample q according to the classifiers D1, ..., DL.

2. If lq(1) =  lq(2) =  ... = lq(L), then assign q to class lq(1).  Otherwise, pass q to the k-NCN classifier (operating with previously found value of k) and assign q to the class suggested by k-NCN.

Fig. 1. Learning and classification in a cascade scheme 
based on 1-NN and k-NCN rules

Other cascade classifiers

The classifier based on ensemble of Skalak’s reduced set has a very fast first stage, regarding the fact that in practice Skalak’s sets perform impressively (compared to other well-known reduced sets) when a very aggressive reduction degree is required [13, 5].

In the following classifiers, the main idea is unchanged, only the models for the two stages may differ to the scheme described above.  The proposed cascade schemes are:

· voting k-NN + k-NCN;

· voting k-NN + k-NSN;

· voting k-NN + voting k-NCN;

· voting k-NN + voting k-NSN.

Note in all of these schemes the voting k-NN is used in the first phase.  An ensemble of k-NN classifiers may vote unanimously even at some level of noise in the neighborhood of the given sample.  This phenomenon is illustrated at Fig. 2.  Despite the fact that q’s nearest neighbor is an indisputably noisy sample no. 1 (belonging to the class of “circles”), it is possible that all component k-NN classifiers will perfectly agree on q, preventing from the second stage of classification.

The voting k-NN is, as mentioned earlier, only neglibibly slower than plain k-NN in typical cases.  If a significant fraction of all test samples (say, about 50% or more) is resolved in the first phase, and the overall accuracy is comparable to accuracies of the “heavy” classifiers (k-NCN and k-NSN), our goal will be accomplished.

[image: image4.png]



Fig. 2. The test sample q may be classified correctly, 
i.e. assigned to the class of „circles”, by all the 
component ki-NN classifiers, assuming that ki ≥ 3, i = 1..L
IV. Experimental results

We conducted experiments on six real datasets: five taken from the well-known Machine Learning Repository at University of California, Irvine (UCI)
 and one concerning quality control of ferrite cores [9, 7].  For the UCI datasets, 5-fold cross-validation was performed five times, so all the errors in Tables 2a-c are averages over 25 runs.  For Ferrite dataset ten unbalanced partitions have been made: training sets contained 1400 samples while test sets included remaining 4503 samples.  The k’s (limited to the interval 1..30) for k-NN and k-NCN rules were found with leave-one-out method.  The k’s for k-NSN rules were taken from respective k-NCN learning sessions.  The k-NSN rules (also in cascade schemes) were tried with 500 and 2500 mutations.  There were 5 Skalak’s reduced set in the ensemble.  The size h of each Skalak’s set in the ensemble was set to 30.  The voting k-NN/k-NCN/k-NSN rules always applied 10 values of k.  City-block (Manhattan) metric was used in all experiments.  No feature selection was applied to any dataset.  Table 1 presents mean errors and their standard deviations on Ferrite data.  Tables 2a-c present only mean errors for the five UCI datasets.

TABLE 1

Comparison of the algorithms on Ferrite data

	classifier
	mean (%)
	st. dev. (%)

	k-NN
	10.96
	0.77

	k-NCN
	10.18
	0.82

	k-NSN, 500 mut.
	9.98
	0.85

	k-NSN, 2500 mut.
	9.94
	0.86

	voting k-NN
	10.42
	0.56

	voting k-NCN
	9.96
	0.80

	voting k-NSN, 500 mut.
	9.38
	0.87

	voting k-NSN, 2500 mut.
	9.45
	0.84

	voting k-NN + k-NCN
	9.99
	0.88

	voting k-NN + k-NSN, 500 mut.
	9.88
	0.92

	voting k-NN + voting k-NCN
	9.64
	0.80

	voting k-NN + voting k-NSN, 500 mut.
	9.45
	0.84


TABLE 2a

UCI datasets.  Comparison of “individual” classifiers

	
	1
	2
	3
	4
	5

	dataset
	k-NN
	k-NCN
	k-NSN, 100
	k-NSN, 500
	k-NSN, 2500

	Bupa
	35.54
	30.38
	30.90
	31.48
	33.16

	Glass
	28.80
	29.92
	28.62
	28.06
	28.06

	Iris
	5.87
	4.40
	4.67
	4.93
	4.93

	Pima
	24.73
	24.48
	24.22
	24.95
	25.42

	Wine
	3.04
	3.16
	2.82
	2.26
	2.37

	mean
	19.60
	18.47
	18.25
	18.34
	18.79


TABLE 2b

UCI datasets.  Comparison of “voting” classifiers

	
	6
	7
	8
	9
	10

	dataset
	voting k-NN
	voting k-NCN
	voting
k-NSN, 100
	voting
k-NSN, 500
	voting
k-NSN, 2500

	Bupa
	34.20
	30.43
	30.49
	30.78
	32.75

	Glass
	28.43
	28.69
	25.99
	26.18
	26.18

	Iris
	5.47
	4.00
	4.13
	3.87
	4.67

	Pima
	24.71
	24.16
	24.53
	24.16
	24.37

	Wine
	3.37
	2.36
	2.03
	2.36
	2.37

	mean
	19.24
	17.93
	17.43
	17.47
	18.07


TABLE 2c

UCI datasets.  Comparison of cascade classifiers
	
	11
	12
	13
	14
	15

	dataset
	5·Skalak
+ k-NCN
	voting
k-NN + k-NCN
	voting
k-NN + voting k-NCN
	voting
k-NN + k-NSN, 500
	voting
k-NN + voting k-NSN, 500

	Bupa
	31.19
	30.84
	30.78
	30.67
	30.96

	Glass
	28.04
	28.60
	28.04
	27.50
	26.46

	Iris
	4.53
	4.53
	4.27
	4.80
	4.53

	Pima
	24.11
	23.90
	24.14
	23.98
	24.11

	Wine
	3.03
	2.26
	1.92
	1.92
	2.14

	mean
	18.18
	18.03
	17.83
	17.77
	17.64


The amount of collected results is hardly readable.  For reader’s convenience we ordered the algorithms according to their ranks on separate UCI datasets.  The best classifier on a given dataset obtains rank 0, the second best rank 1 etc.  In case of ties, equal ranks are given, e.g. if some two classifiers are equally good on a dataset and no other classifier is better, their assigned ranks are 0.5.  The sums of ranks on individual UCI files for each algorithms are presented at Fig. 3.  

One of crucial questions concerns the fraction of test samples which are classified in one stage only in the proposed cascade schemes.  Alas, we cannot here provide full statistics due to shortage of space.  However, summaries are given.

For Ferrites, 80.6% of all samples were resolved in the first stage, when it was an ensemble of reduced sets, while an analogous number for voting k-NN in the first stage is 86.2%. 

For the five UCI datasets, on average 64.7% of all test samples were resolved with an ensemble of Skalak’s set, however the fraction varied from task to task: from only about 33% for Bupa up to about 90% for Iris and Wine.  As previously, the fraction of “easy” samples according to the unanimous voting k-NN criterion was larger than in the reduced sets’ based scheme: 76.8% of all samples on average (from 49% for Bupa to over 94% for Iris and Wine). 


[image: image5.wmf]79,5

47

55

63

74,5

30

20

42

37,5

32

18,5

21

25

0

10

20

30

40

50

60

70

80

90

k-NN

k-NCN

k-NSN, 500

k-NSN, 2500

voting k-NN

voting k-NCN

voting k-NSN, 500

voting k-NSN, 2500

5 - Skalak + k-NCN

voting k-NN + k-NCN

voting k-NN +voting k-NCN

voting k-NN + k-NSN, 500

voting k-NN + voting k-NSN, 500


Fig. 3. Sums of ranks of the tested algorithms on the UCI datasets

V. Conclusions

We presented a family of two-stage classifiers based on unanimous voting criterion.  From analysis of presented tables and Fig. 3 we feel justified to say that our aim has been attained, at least assuming certain representativeness of the datasets used in experiments.  The introduced cascade classifiers yield substantially lower error rates than “baseline” classifiers: plain and voting k-NN, while the increase in classification costs is rather modest (although it depends on the dataset).  Moreover, the accuracies of cascade classifiers with voting k-NN in the first phase are comparable to those obtained by much costlier classifiers (i.e. k-NSN in plain and voting version).  It is hard to point out a single winner, since better classifiers in the family are usually somewhat slower, so the choice is (as usual) application-dependent.  
References

[1] 
Y. Baram, “Partial classification: The benefit of deferred decision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 769–776, 1998.

[2]
E. Bauer and R. Kohavi, “An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants,” Machine Learning, 36, pp. 105–142, 1999.

[3]
T. G. Dietterich, “Ensemble methods in machine learning,” in Multiple Classifier Systems. First International Workshop (MCS2000), pp. 1–15, Cagliari, Italy: Springer-Verlag, 2000.

[4]
Sz. Grabowski, “Voting over Multiple k-NN Classifiers,” in Proceedings of the Int. Conf. TCSET’2002, pp. 223–225, Lviv-Slavsk, Ukraine, Feb. 2002.

[5]
Sz. Grabowski, “Lokalny wybor zredukowanego zbioru odniesienia,” internal seminar on signal processing and analysis, Slok, Poland, pp. 142–147, June 2002 (in Polish).

[6]
Sz. Grabowski, “Towards decision rule based on closer symmetric neighborhood,” Biocybernetics and Biome​dical Engineering (accepted).

[7]
A. Jozwik, L. Chmielewski, W. Cudny and M. Sklo​dowski, “A 1-NN preclassifier for fuzzy k-NN rule,” in Proceedings of 13th International Conference on Pattern Recognition, vol. IV, track D, Parallel and Connectionist Systems, pp. 234–238, Vienna, Austria, August 25-29, 1996.

[8]
C. Kaynak and E. Alpaydin, “Multistage cascading of multiple classifiers: One man's noise is another man's data,” 17th International Conference on Machine Learning, Stanford University, CA, USA, 2000.

[9]
M. Nieniewski, L. Chmielewski, A. Jozwik and M. Sklo​dowski, “Morphological detection and feature-based classification of cracked cegions in ferrites,” Machine Graphics and Vision, vol. 8, no. 4, 1999.

[10]
J. S. Sanchez, F. Pla and F. J. Ferri, “On the use of neighbourhood-based non-parametric classifiers,” Pat​tern Recognition Letters, vol. 18, pp. 1179–1186, 1997.

[11]
J. S. Sanchez, F. Pla and F. J. Ferri, “Improving the k-NCN classification rule through heuristic modifications,” Pattern Recognition Letters, vol. 19, pp. 1165–1170, 1998.

[12]
D. B. Skalak, “Prototype and feature selection by sampling and random mutation hill climbing algorithms,” in Proceedings of the Eleventh International Conference on Machine Learning, Morgan Kaufmann, pp. str. 293–301, 1994.

[13]
D. B. Skalak, “Prototype Selection for Composite Nearest Neighbor Classifiers,” PhD thesis, Dept. of Computer Science, University of Massachusetts, 1996.

Szymon Grabowski – Comp. Engineering Department, �Technical University of Lodz, Al. Politechniki 11, Lodz, 90-924, POLAND, �E-mail: SGrabow@zly.kis.p.lodz.pl











� URL: http://www.ics.uci.edu/~mlearn/MLRepository.html





_1096820218.unknown

_1096820219.unknown

_1101143937.xls
Wykres

		k-NN

		k-NCN

		k-NSN, 500

		k-NSN, 2500

		voting k-NN

		voting k-NCN

		voting k-NSN, 500

		voting k-NSN, 2500

		5 - Skalak + k-NCN

		voting k-NN + k-NCN

		voting k-NN +voting k-NCN

		voting k-NN + k-NSN, 500

		voting k-NN + voting k-NSN, 500



79.5

47

55

63

74.5

30

20

42

37.5

32

18.5

21

25



Arkusz1

		k-NN		79.5

		k-NCN		47

		k-NSN, 500		55

		k-NSN, 2500		63

		voting k-NN		74.5

		voting k-NCN		30

		voting k-NSN, 500		20

		voting k-NSN, 2500		42

		5 - Skalak + k-NCN		37.5

		voting k-NN + k-NCN		32

		voting k-NN +voting k-NCN		18.5

		voting k-NN + k-NSN, 500		21

		voting k-NN + voting k-NSN, 500		25





Arkusz2

		





Arkusz3

		






_1096820217.unknown

