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A classifier based on the k-NN rule is known as the one that offers a very good performance.  
Learning of such kind of classifiers consists in determination the value of k.  Some modification of 
the standard k-NN rule may lead to the improvement of the classification quality.  The relatively new 
k Nearest Centroid Neighbor (k-NCN) decision rule uses an interesting concept of surrounding 
neighborhood, that is such a neighborhood, which takes into account not only the proximity of 
neighbors, but also their spatial location.  Neighbors should be located not only close to a query 
sample, but also possibly around it in the space.  In this chapter we present our decision rule called k 
Near Surrounding Neighbors (k-NSN), which “improves” the neighborhood used in k-NCN with 
respect to both described aspects.  Moreover, we present a voting technique which finds several k 
parameters for k-NN, k-NCN and k-NSN rules learnt from random partitions of the training set and 
utilizes them in an ensemble of classifiers.  As opposed to most ensemble methods, our algorithms 
require moderate computational increase in relation to the base classifiers, and even almost negligible 
computation increase in the voting k-NN case.  We test the aforementioned methods on a remote 
sensing dataset (already used in several experiments) and obtain results which show attractiveness of 
the presented concepts in applications where prediction accuracy is of primal importance.  The main 
disadvantage of the k-NN decision rule and its modified versions is a necessity of keeping the whole 
training set, as the reference set, in the computer memory during a classification phase.  Numerous 
procedures, which have been already proposed for reference set reduction, concern the 1-NN rule. 
Although most proposed methods were originally devised for the 1-NN rule, there is no obstruction 
to use the received reduced sets with k-NN classifiers.  It is also possible to reclassify the original 
reference set by applying the k-NN rule, standard or modified, and then to use the simple 1-NN rule 
with the reclassified set.  The effectiveness of these approaches will be studied in relation to four 
different algorithms of reference set size reduction. 

1 Introduction 

Remote sensing image analysis, in its final stage, consists in classification of pixels.  The 
construction of a classifier is based on the large training set.  Furthermore, not only a 
good performance but also the speed of classification phase plays a very important role in 
a choice of the classifier type.  The best possible decision rule offers the Bayes classifier 
that operates according to the formula: p(j/x)=p(j)⋅f(x/j)/f(x), where p(j/x) is a probability 
of the class j under assumption that the classified object is described by a feature vector x, 
f(x/j) denotes the density of probability distribution for the class j and f(x) is the density of 
probability distribution of the feature vector x.  The vector x is assigned to the class j that 
corresponds to the maximum value of p(j/x).  For convenience, the feature vectors x will 
be treated also as points in the feature space.  

All functions which appear on the right side in the above mentioned Bayes formula 
are unknown.  To approximate them one can use the neighborhood containing the k 
nearest neighbors of the classified point x.  In this way, p(j)≈mj/m, f(x/j)≈kj/(mj⋅V(x,k)), 
f(x)≈k/(m⋅V(x,k)), where mj is a number of objects from the class j in the training set, m is 
a numerical force of the training set, kj means a number of points from the class j among k 
nearest points (neighbors) of the classified point x and V(x,k) is a volume occupied by a 
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hypersphere containing these k nearest neighbors.  Thus, the left side can be calculated. 
The probability function that occurs on the left side of the Bayes formula is then 
approximated by the ratio kj/k, i.e. p(j/x)≈kj/k.  In this way the k nearest neighbor (k-NN) 
decision rule has been obtained.  The classified point x is assigned to the class j that 
corresponds to the highest value of kj/k.  It is proved by others authors [1] that if the size 
m of the training set gets larger (m→∞), k→∞ and k/m→0 then the performance of the k-
NN rule converges to the performance of Bayes’ classifier.  That is why the classifier 
based on k-NN rule has been chosen as a subject of the present paper.  The k-NN rule was 
originally proposed in [2]. 

The training set containing points with known class membership is the set that is used 
for the classifier construction.  In the case of the k-NN rule, it may serve for experimental 
determination a value of the parameter k.  For instance, we can used the well known 
leave-one-out misclassification rate estimation or a cross-validation technique [3] to 
select the value of k which offers the best performance.  

In recent years the concept of so-called surrounding neighborhood has been 
introduced.  Such neighborhood can intuitively be understood as an item subject to two 
complementary constraints.  Firstly, the neighbors of a query point q should be as close to 
it as possible.  Secondly, the neighbors should also be located as symmetrically around q 
as possible.  The k-NN ignores the latter aspect.  Let us concentrate on one practical 
proposal fitting into this framework. 

The idea of Chaudhuri [4], later developed to a decision rule [5], seems to be an 
interesting attempt to focus on neighbors, which are located not only close enough to the 
given sample, but also possibly homogeneously distributed around the sample.  It is the 
concept of Nearest Centroid Neighborhood (NCN).  The k nearest centroid neighbors of a 
query point q are obtained as follows: 

– first neighbor of q is its nearest neighbor, n1; 
– the i’th neighbor, ni, i ≥ 2, is such that the centroid (i.e. the mean) ci of this and 

previously selected neighbors, n1, ..., ni-1, is the closest to q. 
Because of the centroid criterion, the spatial distribution of neighbors is taken into 

account.  On the other hand, the incremental nature of the way in which successive 
neighbors are obtained guarantees their proximity to the query sample q. 

Experiments conducted by Sánchez et al. ([5, 6]1) confirm attractiveness of the k-
NCN decision rule, especially in applications where classification accuracy is more 
important than classification time.  The k-NCN usually outperformed the standard k-NN 
rule. 

Just like for k-NN, also for k-NCN the number of neighbors must be estimated with 
respect to the training set, preferably with the leave-one-out method. 

In [7] we proposed another surrounding neighborhood based decision rule, called k 
Near Surrounding Neighborhood (k-NSN), which tries to optimize both criteria used by k-
NCN. 

In this chapter we propose an ensemble of k-NN (or k-NCN, or k-NSN…) classifiers 
in which the values of k are diversified via estimations performed on various random 
partitions of the training set.  We believe such an approach is, to a certain degree, a 
protection from overfitting.  An experimental confirmation of the idea is presented in 

                                                           
1 In our experiments on the remote sensing dataset used in the paper and on several UCI 
datasets, the better of the two modifications to the k-NCN rule proposed in [6], offered a 
notably worse accuracy than the original rule. 
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Section 5.  Moreover, as opposed to most classification schemes with voting over 
multiple classifiers, the proposed technique does not require an increase in computational 
resources directly proportional to the number of components. 

2 The k Near Surrounding Neighbors (k-NSN) decision rule 

The heuristic nature of k-NCN encourages us to search for other decision rules which 
would take into account both described aspects of neighborhood.  As the centroid 
criterion from k-NCN seems really good, we decided not to change it, but only optimize 
the set of neighbors according to both criteria: one related to proximity and the other to 
the distance of the neighbor set’s centroid to the test sample. 

Our classifier first searches for k NCN neighbors of a test sample and then in a loop 
tries to exchange some neighbors with other samples which are both closer and better in 
the sense of the centroid criterion to the test sample. 

More precisely, the proposed decision rule, which we called k Near Surrounding 
Neighbors (k-NSN), operates as described in Fig. 1. 

Note it is a random mutation hill climbing algorithm; the neighbor exchanging idea is 
analogous to the one applied by Skalak to prototype selection [8]. 

In our experiments the learning phase for k-NSN was performed with use of the k-
NCN rule, which is faster.  

 
Find k nearest centroid neighbors of a test sample q.  Call the neighbors n1, ..., nk.  Call 
their centroid c. 
For counter = 1 to ITERATIONS do 
{ 

Select a random neighbor ni, ki ≤≤1  
Select a random sample s, such that ( ) ( )farthestnqdsqd ,, ≤ , where nfarthest is the k’th, 

according to the distance, NCN neighbor of q 
If ( ) ( )inqdsqd ,, ≤  
{ 

Let tentative_c = centroid(n1, ..., ni-1, s, ni+1, ..., nk) 
If ( ) ( )cqdctentativeqd ,_, <  
{ 

Let ni = s 
Let c = tentative_c 

} 
} 

} 
Return the set of neighbors n1, ..., nk. 

Figure 1: The k Near Surrounding Neighbors (k-NSN) decision rule 

3 Voting over multiple classifiers 

An essential problem in all classification tasks is the danger of overfitting.  This 
phenomenon consists in choosing the classifier and its parameters (comprising e.g. some 
numeric values, its reference set(s) etc.) so well fitting the learning data that it does not 
actually fit the real concept.  The trouble „as such” is inevitable since in practice we 
always deal with finite datasets, however ways to mitigate it have been developed. 
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One of the most attractive approaches to increase accuracy and/or minimize error 
variance (i.e. generate classification models which are more trustworthy to be safe from 
excessive overfitting) is the idea of combining classifiers.  It has attained a vivid interest 
in the past decade, which resulted in a number of theoretical and practical achievements, 
especially in the domain of decision trees (for a survey see e.g. [9, 10]). 

The success of ensembles can be explained in following words: if each particular 
voter (=component classifier) produces different approximation to real decision 
boundaries, then during the voting (which is kind of averaging process) the noise is 
supposed to be smoothed out, especially if the number of voters is large.  This, however, 
holds true when the voters are independent.  The condition of independence is not only 
hard to fulfill but even to measure in a real-life (finite) task.  In practice we thus rather 
strive to select weakly correlated („diverse”), but still quite accurate classifiers.  Several 
heuristic measures of diversity between component classifiers have been proposed and 
tested [11, 12], but any stronger guidelines on how to choose the classifiers for the 
ensemble still cannot be given. 

Fig. 2 shows a case where an ensemble of five simple classifiers under majority 
voting solves the classic XOR problem.  Note the components are not independent (e.g. 
classifiers 1 and 5 have same predictions on the whole domain). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

Figure 2: An ensemble of classifiers solves the XOR problem 

Little has been done specifically in combining nearest neighbor classifiers.  We are 
aware only of a few papers in this domain, namely Skalak’s combining 1-NN classifiers 
with radically reduced prototype sets [8, 13], voting over Hart’s condensed nearest 
neighbor classifiers [14], Multiple Feature Subsets (MFS) algorithm [15] and 

majority voting 

classifier 1 classifier 2 classifier 3 classifier 4 classifier 5

    final decision 
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decomposition of a multi-class problem into a net of dichotomizers [16, 17] (the last idea 
is of more general use and in fact has been known for years in neural network community 
[1]). 

In this chapter we attempt to overcome the problem of selecting k in k-NN (or 
another k neighbors’ based classifier) through using a number of k-NN (or such like) 
classifiers, each working on the whole reference set, but with its own value of k.  Final 
decision is obtained via simple voting.  The component k-NN classifiers are trained on 
random partitions of the whole learning set.  Our goal is to increase accuracy rather than 
to decrease training costs (which in fact must be greater in our version compared to plain 
k-NN).  Beneath we refer to the algorithm as to voting k-NN. 

How does the learning in voting k-NN proceed in detail?  A known technique which 
allows to estimate a classifier during the learning stage (i.e. in design time) is partitioning 
the whole learning set into two parts: a „real” training set and a validation set.  The 
models for the classifier under design are applied for the former set but tested on the latter 
one.  Of course, an obvious deficiency of such a technique is shrinking the training set.  
This, however, seems a price we must pay for the comfort of some estimation of the 
classifier yet in the learning stage.  The question arises: how the given set should be 
divided into those two parts?  Too few samples in the training set results in a very weak 
approximation of the underlying distribution.  Too few samples in the validation set, on 
the other hand, implies an unreliable estimation of the generated classifier.  

Our decision was to divide the learning set into halves.  The optimal k for the training 
half was then sought with respect to the validation half.  Such a random split followed 
with a k-NN learning session was performed L times to obtain L values: k1, ..., kL.  The 
learning routine is also presented in Fig. 3 in a pseudo-Pascal code. 

 
{ Tr – training set } 
for i:=1 to L do  { L trials } 
begin 
  RS(i) := random_select(size(Tr) / 2);   
  { RS(i) – random subset of Tr } 
  CVS(i) := Tr \ RS(i);  { CVS(i) – current validation set } 
  k(i):=find_best_k_for_kNN(RS(i), CVS(i));   
  { on RS(i), with respect to CVS(i) } 
end; 
{ output: learnt parameters k(1), ..., k(L) } 

Figure 3: Finding parameters for voting k-NN 
 

The classification of a query sample q consists in producing L class labels for q 
according to ki-NN, i=1..L, and finally assigning q to the class most frequently appearing 
among those L labels.  By analogy we construct voting k-NCN and voting k-NSN rules. 

4 Computational issues 

What is the time complexity of finding k nearest neighbors?  In practice, usually a naive 
implementation is used.  During the search a sorted list of k NN’s for a query sample is 
kept and updated when needed.  Although typically (and for small enough values of k) the 
search time is about 1.1n..1.2n (i.e. only some 10-20% longer than 1-NN search time), in 
worst case it will be ( )kndO ⋅⋅ , d – dimension.  To protect from the worst case, another 



Nearest neighbor decision…  submitted to World Scientific : 2002-11-06 : 12:51 6/13 

implementation can be used.  First, distances to all n samples from the reference set are 
calculated and sorted, and then voting over classes of the first k neighbors incurs the 
classification decision.  The classification time is therefore ( )cknnndO +++⋅ log , d 
– dimensionality, c – number of classes.  As nk ≤  and nc ≤  (typically nk <<  and 

nc << ), and usually log n is on the order of magnitude of d, the overall cost is close to 
( )ndO ⋅ . 

The classification in voting k-NN may follow the latter of the described 
implementations.  The difference is in the final stage: instead of scanning k neighbors, we 
have to take into account iLi

kk
..1max max

=
:=  neighbors.  The overall cost is 

( )cLknnndO ⋅+++⋅ maxlog .  For reasonable values of L (in our tests L=10 seemed 
fairly good) the cost is practically comparable to the cost of original k-NN in worst-case 
protecting version.  If the naïve neighbor search is used, then voting k-NN is slightly 
slower than plain k-NN, because kmax is often about twice greater than the globally 
selected k. 

In the case of voting k-NCN, the slow-down related to the conventional rule is equal 
to the ratio of kmax and the globally selected k.  The slow-down factor for voting k-NSN is 
close to an analogous ratio. 

5 About the data 

Our considerations concern images obtained by two sensors installed on an aircraft: a 
Daedalus 1268 Airborne Thematic Mapper scanner and a fully polarimetric PLC band 
NASA/JPL airborne radar system.  The geographical location was the Feltwell area.  The 
average registration error was on a pixel level.  The ATM images were filtered by a linear 
smoothing and context-sensitive enhancement filter; then they were segmented by a 
multiband region-growing technique.  Five following regions, i.e. classes, were selected: 
carrots, potatoes, stubble, sugar beet and wheat.  Each pixel was described by 9 features, 
obtained from optical and radar channels.  Below a brief feature description is given: 
features 1 – 6 are responses of the Daedalus sensor for bands from 2 to 7 respectively, 
feature 7 is a response for the band C with HH polarization, feature 8 is a response of the 
radar sensor for L band and HV polarization and the feature 9 is a response of the radar 
sensor for the band P and VV polarization.  More detailed description of the data can be 
found in [18].  

Originally, the authors of [18] considered 15 features.  However, our experiments 
have been constrained to the first 9 features out of 15.  Our goal is to present rather the 
new approaches than search for the features, which would enable the smallest error rate.  
A data set, we deal with, contains 5 classes, 9 features and 5124 pixels.  

6 Experimental comparison of the classifiers 

We conducted experiments on real data taken from a remote sensing application 
described in the previous section.  

Experiments were performed for training sets with sizes of 500, 750 and 1250 
samples, each class represented with the same number of instances; the remaining 
samples formed respective test sets.  For each training set size, ten partitions have been 
made; the presented results are averages over 10 runs.  The city-block metric was used in 
all tests. 
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The k’s for plain k-NN and k-NCN were found with leave-one-out cross-validation.  
As mentioned earlier, the k-NSN experiments benefited from learning sessions of k-NCN.  
The k-NSN based tests were run with the number of mutations for k-NSN sessions equal 
to 500 and 2500.  All voting algorithms were tested in the described manner with 10 
component classifiers.  In all trials, both for plain and voting classifiers, the values of k 
were inspected in the interval 1..30.  The results, in per cent, are presented in Table 1. 

 

k-NN voting 
k-NN k-NCN voting 

k-NCN

k-NSN, 
500 
mut. 

voting 
k-NSN, 

500 
mut. 

k-NSN,  
2500 
mut. 

voting  
k-NSN,  

2500 
mut. 

error (%) 23.1 23.4 23.5 22.7 22.8 22.0 22.9 22.2 size 
500 st. dev. (%) 1.0 0.6 1.1 0.7 0.6 0.6 0.8 0.6 

error (%) 22.6 22.2 21.5 20.9 21.1 20.5 21.2 20.5 size 
750 st. dev. (%) 0.5 0.6 0.9 0.6 0.7 0.5 0.6 0.5 

error (%) 21.4 20.7 20.2 19.7 20.0 19.2 19.9 19.2 size 
1250 st. dev. (%) 0.8 0.9 0.9 0.5 0.8 0.5 0.6 0.4 

Table 1: Comparison of described algorithms on remote sensing data 
It should be noticed that the described voting technique decreased the test errors of 

all respective base classifiers in all cases, and also decreased the error variance in most 
cases.  The average errors for the most successful classifier (i.e. voting k-NSN with 500 
mutations) were lower than the errors offered by the plain k-NN rule by more than 2%. 

In Table 2 we compare the numbers of NCN neighbors used for each partition of the 
datasets and the maximal numbers of NCN neighbors in the voting scheme.  For example, 
the ratio of about 1.6 means exactly that on the given dataset the voting algorithm is on 
the average slower than plain k-NCN by the factor of about 1.6. 

partition number 
size classifier 

case 01 02 03 04 05 06 07 08 09 10
mean 

ratio 
kmax / 

global k 
k in plain  
k-NCN 11 10 21 14 7 10 15 21 11 17 13.7 

500 
kmax in voting  

k-NCN 19 26 24 27 25 13 20 19 20 22 21.5 
1.6 

k in plain  
k-NCN 14 11 11 14 15 10 21 7 20 10 13.3 

750 
kmax in voting  

k-NCN 17 28 16 29 12 14 20 13 20 17 18.6 
1.4 

k in plain  
k-NCN 15 13 11 14 27 7 11 12 14 13 13.7 

1250 
kmax in voting  

k-NCN 22 15 24 18 16 19 21 29 23 20 20.7 
1.5 

Table 2: The values of k selected for each partition 

7 Remarks about the k-NN, k-NCN and k-NSN classifiers 

The goal of our work was to create a homogeneous ensemble of k-NN-like classifiers 
which would differ only in the number k of neighbors used for prediction by each 
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component.  The ensemble was expected to be less prone for overfitting the training data 
and an additional motivation was a modest increase of the classification time. 

We obtained quite promising results.  There is some resemblance between our 
method and the old idea of weighted k-NN [19, 20].  Nearer neighbors generally affect 
more component decisions than farther ones.  This is similar (but not equivalent) to 
setting weights.  One difference to the referenced concept must be however stressed: our 
„weights” are rank-based, not distance-based.  Although the pointed effect may shed 
some light on why the scheme can work, definitely much more insight is required. 

In our previous paper [21] we conjectured the introduced voting idea may be applied 
also to classifiers more complex than k-NN.  Indeed, the results of voting k-NCN and k-
NSN presented here confirm attractiveness of the approach.  The classification speed 
decrease, really small in the voting k-NN case, is however greater now, reaching in our 
experiments about 50% penalty with k-NCN.  This, however, still contrasts with most 
ensemble methods, where the slow-down compared to a single component classifier is 
usually proportional to the number of components. 

We have not tried to combine the voting idea with any pairwise scheme for 
multidecision tasks [16, 22].  This is going to be a subject of our future experiments. 

A separate contribution of this paper are further tests of the k-NCN and k-NSN rules.  
The surrounding neighborhood concept and in particular its Nearest Centroid realization, 
poses several interesting questions: 

•  Does the centroid criterion reflect the neighborhood homogeneity really well?  (Note 
a set of points (=neighbors) on a line could have a gravity center exactly at the test 
sample q, but intuitively we would not call this set as lying symmetrically around q.) 

•  Even with the centroid criterion in mind, are there possible other efficient methods of 
optimizing the neighborhood? 

•  What about voting over several (different) surrounding neighborhoods? 

•  For a given set, is it possible to predict if a given method succeeds or fails? 

Of course, the last question is of much more general importance. 

8 Reference set size reduction problem 

The classifiers for remote sensing problems are usually constructed with the use of the 
large date sets.  For this reason the classification speed may be not satisfactory.  The most 
promising way to make the classification faster consists in reference set reduction.  It is 
an interesting problem how to reduce the reference set or to replace it by a smaller one 
without a remarkable decrease of the classification quality.  Numerous effective reference 
set reduction algorithms have been devised only for the 1-NN rule that usually yields 
worse performance as compared to the standard k-NN rule.  For this reason the classical 
k-NN rule may first be approximated by the 1-NN rule.  To do this, it is sufficient to 
reclassify the original reference set, i.e. training set, and then to reduce it and use with the 
1-NN rule.  However, it is also worth to check how behaves the k-NN rule operating with 
the reduced sets obtained for the 1-NN rule.  

Three most popular reference set reduction [23, 24, 25] algorithms based on 
consistency idea will be compared with the approach that consists in reference set 
partitioning.  The consistency means that 1-NN rule operating with the reduced set 
classifies correctly all points from the original reference set.  These algorithms determine 
the size of the reduced set.  The procedure based on reference set partitioning described in 
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[26] can also define the size of the condensed reference set.  The term condensed is used 
to stress that the obtained set is not a subset of the primary reference set.  A slight 
modification of this procedure allows to condense the reference set to the desired size.  In 
the next two sections the detailed description of the analyzed methods of the reference set 
size reduction will be given. 

9 Reference set reduction algorithms 

Hart’s algorithm.  The first point from the reference set is qualified to the (initially 
empty) reduced reference set.  Next, the remaining points of the primary reference set are 
classified by the 1-NN rule with the current reduced reference set.  Each misclassified 
point is added to the reduced reference set.  Such classification of all points from the 
primary reference set is repeated as long as m subsequent classifications do not increase 
the size of the reduced reference set.  The first points selected to the reduced reference set 
can lie far away from the class boundary.  This disadvantage of Hart’s algorithm has been 
removed by Gowda-Krishna modification.  The Hart algorithm was originally proposed in 
the paper [23]. 

Gowda-Krishna’s algorithm.  A mutual distance measure mdm(x) is associated with 
each point x of the primary reference set.  The mdm(x) is calculated in the following way.  
For the point x the nearest point y from the opposite class is found.  A number of points 
from the same class as x that lie closer to y than x to y is the value of mdm(x).  Next, all 
the points of the primary reference set are arranged according to growing values of 
mdm(x).  Finally, the Hart algorithm is applied to the reference set ordered in this way.  
This modification of Hart’s algorithm was proposed in the work [24]. 

Tomek’s algorithm.  Each point x for which exists a point y, from another class than 
x, such that the internal part of the ball spanned by the points x and y does not contain any 
points from the reference set, is qualified to the reduced reference set.  Originally [25], 
this algorithm was defined in a different way.  Furthermore, the two class problem and the 
Euclidean distance function was assumed. 

The authors of the three above described algorithms tried to construct the so called 
consistent reduced reference set, i.e. the set which, when used as the reference set with 
the 1-NN rule leads to correct classification of all points from the primary reference set.  
However, in the case of Tomek’s algorithm the consistency is not guaranteed.  

Gowda-Krishna algorithm produces the smallest size of the reduced set, the Hart’s 
algorithm is the fastest and the Tomek’s procedure generates the separating hypersurfaces 
close to the ones based on the whole reference set. 

10 Reference set condensation algorithm 

To describe the algorithm it will be convenient to introduce the notion of a diameter of 
the set, which is understood as the Euclidean distance between its two farthest points.  

Condensation by multiple reference set partitioning.  At the start point the 
condensed set contains only one point G(1), equal to the reference set gravity center and 
labeled as the majority of its points.  So, the label of this point corresponds to the class 
most heavily represented in the training set.  Then two farthest points P1 and P2 of the 
reference set are found.  The first partition is performed by a hyperplane passing in the 
middle between P1 and P2 and orthogonal to straight line that joins these points.  The 
points, which lie closer to the point P1 than to the point P2 or in the same distance form 
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the set C(1) and the remaining points create the set C(2).  The previous point G(1) is 
replaced by the gravity center of C(1).  The point G(1) and the gravity center G(2) of 
C(2) assume the labels as the majority of points in the sets C(1) and C(2) respectively.  
Now, the condensed set contains two points, G(1) and G(2).  

Let us assume that the original reference set has been dropped into m-1 subsets C(i).  
The current condensed set contains then m-1 points G(i), gravity centers of C(i).  From 
among all C(i) containing at least two points from different classes the set C(j) with the 
largest diameter is selected.  This set with the help of its two farthest points P1 and P2 is 
divided into two parts D1 and D2.  The old C(j) is replaced by D1 and the new set 
C(m)=D2 is created.  Thus, the number of subsets C(i) has been increased from m-1 to m.  
Taking new G(j) as the gravity center of D1 and computing G(m) as the gravity center D2, 
the size of the current condensed set will be increased to m.  In this way, by virtue of the 
described recursion scheme, the number of subsets can get larger and larger until all C(i) 
with at least two points from different classes will be exhausted.  So, the size of the 
condensed reference set is determined.  A more formal description of this algorithm can 
be found in [26]. 

11 Computational results 

Five hundred pixels (one hundred from each class) were randomly selected to be used as 
the training set, and the remaining 4624 pixels were treated as the testing set.  Such an 
experiment was repeated 10 times.  In each experiment all the algorithms presented in the 
previous two sections were applied.   

The optimum value of k was found first for the whole training set by use of the leave 
one out method.  If more then one value of k offered the smallest error rate then largest 
one was selected since such a choice promises a lower standard deviation of the 
misclassification rate.  Then this k was used to reclassify all ten training sets.  The raw 
and the reclassified training sets were separately applied for the reduced and condensed 
reference set constructions.  The values of k for the reduced (condensed) sets were 
calculated also by the leave one out method only on the basis of these sets.  Error rates 
were calculated by use of corresponding testing sets.  Results of the computations were 
gathered in Table 3.  The most interesting results have been marked by the bold font. 

One can notice that Tomek’s algorithm gives very weak reduction.  The error rates 
are nearly the same as the ones offered by the complete reference set, but the reduction 
degree is very small.  The use of 1-NN rule with the reclassified set instead of k-NN with 
raw data is fruitful.  The former results in 205 points in the reduced set and error rate 
equal 26.5%, while the latter produces 294 points and the misclassification rate equal 
32.9%.  No significant difference is observed between the Hart and the Gowda-Krishna 
procedures.  

Remarkably better results, taking into account the reduction degree as well as the 
error rate, promises the approach based on reclassified reference set dividing.  It offers 
twice smaller reference set size reduction saving nearly the same performance as Tomek’s 
algorithm.  The solution with k-NN rule, k>1, costs slightly more time in comparison to 
the case when k=1.  A suitable modification of the well known Quick Sort algorithm 
allows very fast search of the nearest neighbors.  

The result of Hart’s and Gowda-Krishna’s approaches are also worth of attention 
because of strong reduction.  
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Reference set 
Original Reclassified Decision rule    →→→→ 

1-NN k-NN 1-NN 

Reduction type   ↓↓↓↓  mred 
error 

rate % k mred 
error 

rate % mred 
error 

rate % 
Column                               0 1 2 3 4 5 6 7 

No reduction, mean value 500 30.0 9 500 23.1 500 26.1 
Standard deviation 0 1.0 2 0 0.8 0 0.6 
Tomek, mean value 473 29.9 8 473 23.5 419 26.1 
Standard deviation 4.9 0.9 3 4.9 1.0 12 0.6 
Hart, mean value 255 34.7 15 255 27.4 162 28.3 
Standard deviation 10 1.0 4 10 2.4 11 1.3 
Gowda-Krishna, mean value 245 35.0 26 245 29.3 149 28.9 
Standard deviation 12 0.6 12 12 2.9 11 1.3 
Partitioning, mean value 294 32.9 11 294 25.1 205 26.5 
Standard deviation 13 1.0 5 13 1.5 14 1.2 

Table 3: Results of reference set size reduction 

12 Conclusions 

As it was explained in Section 1, the classifiers based on k-NN rule promise the 
performance close to the one offered by the Bayes classifier if the training sets are 
sufficiently large.  We have shown that some modifications of the k-NN rules can 
outperform the original standard version, it depends on the data we deal with.  The larger 
are the training sets, the smaller difference between the standard and the modified version 
of the NN type classifier can be expected.  We feel that also the performance of the k-NN 
rules or 1-NN rule operating with the reduced or the condensed sets converge to the 
performance of the Bayes classifier.  Thus, for the very large data there will be no reason 
to use the reference set of the original size. 

In the case of the rules based on the reduced reference sets we have used the standard 
k-NN rule with the raw data or 1-NN rule with the reference sets reclassified by the k-NN 
rule.  It would be interesting to examine the results, which could be obtained by 
association the reduced reference sets with the proposed k-NSN classifier.  The classifier 
for remote sensing problems can be based on several time larger data that the ones used in 
the present paper.  The reference set reduction can not only accelerate the classification 
phase but also the training stage. 

It is worth to notice that reference set condensation algorithm starts with one point in 
the condensed set and stops when each subset of the original reference set contain points 
from the one class only.  So, there is a possibility to control the classification quality after 
each sequential increasing of condensed set by one point.  In this way we can find the 
most appropriate compromise between the speed and the quality of the classification 
phase. 
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