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ABSTRACT

A novel cascade nearest neighbor classification scheme is proposed.  At each stage of the cascade, the prediction is made by an ensemble of several reduced sets.  The relation of inclusiveness between respective reduced sets is maintained, which is beneficial for the classification speed.  In the tests on two large real datasets, the scheme outperformed other reduction based algorithms in accuracy, while the classification speed was about 1.5–2 times greater than of its closest rival.

1. Introduction

The k Nearest Neighbor (k-NN) decision rule [5] still belongs to the most powerful and popular classifiers.  Its main benefits are high practical accuracy (achieving the Bayes error in the asymptotic case) and simplicity.  However, in some applications, especially in on-line pixel-by-pixel optical image analysis, the k-NN may be too slow.  A widely-used “cure” for this problem is reduction (condensation) of the reference set, often with setting k to 1 (one nearest neighbor rule).  Reduction consists in replacing the original reference set S with a smaller set R (often, but not always, R is a subset of S), so as to approximately retain the original decision boundaries.  A plethora of reduction algorithms have been proposed, starting from Hart’s method published in 1968 [11].  A good survey of the topic can be found in [21]. 

Skalak pioneered quite a different approach: to vote over several aggressively reduced reference sets [19].  Each of the sets participating in the voting process was obtained by Skalak’s own stochastic routine [18].  Voting over diverse components is a well known and practically validated technique for increasing classification accuracy (e.g., [10], [4]), however there is still little theoretical ground for understanding this phenomenon.  The most plausible explanations of the success of many ensemble schemes are, roughly speaking, broadening of the representational space and overfitting avoidance due to averaging (smoothing the boundaries) [4]. 

In [7, 9] we introduced another approach for speeding up the classification within the domain of nearest neighbor schemes.  Our idea, called local reduced set selection, was to select one reference set from an ensemble of reduced sets for a given test sample, using a very fast criterion. 

Currently, we present yet another approach to the problem, expanding the idea of voting over several reduced sets in a cascade scheme.

2. BUILDING BRICKS

The scheme proposed in this paper is based on several preliminary ideas, which should now be described.

2.1. Skalak’s reduction routine

Skalak’s reduction algorithm [18] is extremely simple.  It uses a random mutation hill climbing procedure which starts with selecting at random h samples which constitute the current reduced set R (h – specified by the user) and estimating the accuracy of 1-NN with set R on the whole set S.  Then, in a loop, m1 mutation attempts is performed: a single mutation consists in substituting one random sample from R with one random sample from 
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; if and only if the new reduced set outperforms the old one in terms of accuracy, then the replacement is accepted (otherwise R remains unchanged).  Note that Skalak’s routine depends on two free parameters: h and m1.  As opposed to most other schemes known from the literature (e.g., Hart’s algorithm [11]), the routine does not guarantee consistency of the obtained reduced set with the original reference set, i.e., the reduced set may not correctly classify all the samples from the original set.

2.2. voting over multiple reduced sets

An essential problem in all classification tasks is the danger of overfitting.  This phenomenon consists in choosing the classifier and its parameters (comprising, e.g., some numeric values, its reference set(s) etc.) so well fitting the learning data that it does not actually fit the real concept.  The trouble is essentially inevitable, since in practice we always deal with finite datasets, however ways to mitigate it have been developed.

One of the most attractive approaches to increase accuracy and/or minimize error variance (i.e., generate classification models which are more trustworthy to be safe from excessive overfitting) is the idea of combining classifiers.  It has attained a vivid interest since the early 1990’s, which resulted in a number of theoretical and practical achievements, especially in the domain of decision trees (for a survey, see, e.g., [4], [3]).

One of possible explanations of the success of ensembles can be stated in the following words: if each particular voter (=component classifier) produces different approximation to real decision boundaries, then during the voting (which is kind of averaging process) the noise is supposed to be smoothed out, especially if the number of voters is large.  It is easy to show that assuming the components are independent and the probabilities of errors they commit are all p, 
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, the classification error of the ensemble with majority voting (i.e., components have equal weights) tends to zero with the increasing number of components [15, 10], and the error variance of the ensemble also decreases to zero [14, 1].  The assumption of true independence is however utopian, so in practice we thus rather strive to select weakly correlated („diverse”), but still quite accurate classifiers.

The idea of ensembles of fast nearest neighbor classifiers was introduced by Skalak [19], and in the simplest form it consists in majority voting over multiple (as many as 100 in his experiments) very small reduced sets (in the original work, the size h of each reduced set was as small as the number of classes in the task).

2.3. CASCADE CLASSIFIERS WITH UNANIMOUS VOTING CRITERION

An interesting idea attempting to achieve a satisfactory compromise between classification accuracy and speed is the concept of cascade classifiers [2, 13].  A cascade classifier comprises several stages (usually two or three only).  The classifier in the first stage is the fastest but also the simplest (roughest) one.  Further stages comprise more and more complex (but also slower) classification models.  If the prediction of a given sample in a given classification stage is not considered confident enough, then the sample is passed to the successive stage.  A practical success of a cascade scheme is possible if the classification of a significant fraction of all samples is terminated quickly enough (and, of course, the overall accuracy is satisfactory).  The difficult question is however about the prediction confidence criterion.  In our earlier work [8], we proposed a two-stage cascade classifier with an ensemble of homogenous classifiers in the first stage.  The first-stage decision was accepted on the basis of unanimous voting, i.e., when all components in the ensemble yielded the same response.  Such a design decision is supported by the observation that it is not very likely to have several (independently built) classifiers which would all err (with the same erroneous class label!) on a given sample.  In the current paper, the unanimous voting criterion concept is used in another setting.

3. The proposed scheme

The proposed algorithm Telescope Ensembles of Reduced Sets (TERS) is a cascade scheme.  Each stage of the scheme is defined by an ensemble of reduced sets with 1-NN decision rule.  The numbers of components in each ensemble are equal and denoted here by l.  The number of stages in the scheme is denoted by m.  Let the ensembles be denoted by 
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and also we require that
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The formulas (2) provide the “telescope” nature of the scheme.  As, at each processing level (except the first stage), the current reduced set is a superset of a set from the previous stage, then finding the nearest neighbor from the current set requires calculating distances only to the “new” samples, which is beneficial for the classification speed.

Each reduced set in a given ensemble has the same cardinality.  Let us denote the numbers of samples in reduced sets in successive ensembles by 
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Each of the reduced sets utilized in the scheme is generated in the manner of the Skalak routine.  However, the reduced sets for ensembles 
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, are obtained from the respective reduced sets from the previous stage.  The “old” samples in the currently built set 
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 are left intact, and only the “new” samples, which eventually form the set 
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, are susceptible to the mutations.  Naturally, the sets from ensemble 
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 (first stage in the cascade) are obtained with Skalak’s original routine.

More formally, the TERS learning and classification procedures are presented at Fig. 1.

Learning (l, m, r1, …, rm) 

1.
Generate independently l classifiers D1,1, ..., D1,l with reference to the given set S.  Additionally, let D1,1, ..., D1,l​ be based on Skalak’s reduced sample sets R1,1, ..., R1,l, respectively, and use 1-NN rule.

2.
For each i = 2, …, m:

2.1. Generate l classifiers Di,1, ..., Di,l on the basis of Skalak’s routine with reference to the given set S, with the requirement that the generated reduced sets Ri,1, ..., Ri,l be supersets of the sets 
Ri​–1,1, ..., Ri–1,l, respectively.

Classification of sample q
1. Set i to 1.

2. Find labels cq(i, j), j = 1, …, l, to sample q according to classifiers Di,1, ..., Di,l.

3. If cq(i, 1) =  cq(i, 2) =  ... = cq(i, l), then assign q to class cq(i, 1) and terminate.

4. If i = m, then assign q to the class most heavily represented among the labels cq(m, j), j = 1, …, l, and terminate.
5. Increase i by 1 and go to 2.

Fig. 1. Learning and classification in TERS scheme 

4. EXPERIMENTAL results

The experiments have been conducted on two large real datasets: one concerning quality control of ferrite cores [12, 16] and one taken from a remote sensing application [17].  

For Ferrites dataset, ten unbalanced partitions have been made: training sets contained 1400 samples while test sets included remaining 4503 samples.  The feature space was 30-dimensional, samples belonged to one of eight classes.  

The available remote sensing dataset contained 5124 samples (five classes, nine features).  The learning sets (again, ten partitions used) had 1250 samples (250 samples per class).

City-block metric was always used; no feature selection was applied to any dataset.    The number of mutations m1 in all Skalak-based schemes was set to 1000.  Tables 1 and 2 present mean reduced set sizes (column 4) and errors (column 5) on Ferrites and remote sensing data, respectively.  The references in column 3 are related to the algorithms solely (all the tested algorithms were implemented by the author of this paper; no results from others authors are cited). 

The classification algorithms are logically grouped.  Rows 1 and 2 contain the results of k-NN and 1‑NN methods with the full (original) reference set.  Rows 3-6 are occupied by the results of conventional reference set reduction methods; “conventional” in the sense that the reduction routine produces a single reduced reference set.  Skalak’s algorithm is tested twice with different reduced set size (rows 5 and 6).  Other tested algorithms are Hart’s (Condensed Nearest Neighbor, CNN) and Tomek’s [20].  Rows 7-10 are associated with local reduced set selection schemes; there are two variants tested, one based on clustering (rows 7 and 9) and the other on space partitioning (SP) with hyperplanes (rows 8 and 10).  The classification speeds of schemes from rows 5, 7 and 8 are equal, and so is with the speed of the schemes from rows 6, 9 and 10.  Rows 11-15 store results of ensembles of five Skalak’s reduced sets with majority voting; they differ in the size of the components: from 10 through 50 elements in the component sets.  Finally, row 16 presents the results of the introduced TERS scheme.  The (ad hoc) parameters for TERS are: 
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	nr
	algorithm
	ref.
	size
	error (%)

	1
	k-NN, no reduction
	[5]
	1400
	10.96

	2
	1-NN, no reduction
	[5]
	1400
	11.60

	3
	Hart (CNN)
	[11]
	388.0
	14.01

	4
	Tomek
	[20]
	1115.6
	11.61

	5
	Skalak
	[18, 21]
	30
	13.30

	6
	Skalak
	[18, 21]
	100
	13.04

	7
	Skalak + clustering
	[7, 9]
	30–16=14
	12.76

	8
	Skalak + SP
	[7, 9]
	30–8=22
	12.67

	9
	Skalak + clustering
	[7, 9]
	100–16=84
	12.93

	10
	Skalak + SP
	[7, 9]
	100–8=92
	12.86

	11
	5
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Skalak
	[19]
	5
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10
	12.88

	12
	5
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Skalak
	[19]
	5
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20
	11.81

	13
	5
[image: image28.wmf]*

Skalak
	[19]
	5
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30
	11.41

	14
	5
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Skalak
	[19]
	5
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40
	11.26

	15
	5
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Skalak
	[19]
	5
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50
	11.11

	16
	TERS
	[this paper]
	5
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10 ... 5
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50
	11.01


Table 1. Comparison of the algorithms on Ferrites data

	nr
	algorithm
	ref.
	size
	error (%)

	1
	k-NN, no reduction
	[5]
	1250
	21.67

	2
	1-NN, no reduction
	[5]
	1250
	28.06

	3
	Hart (CNN)
	[11]
	602.2
	33.26

	4
	Tomek
	[20]
	1197.3
	28.09

	5
	Skalak1
	[18, 21]
	30
	26.28

	6
	Skalak1
	[18, 21]
	100
	25.90

	7
	Skalak1 + clustering
	[7, 9]
	30–16=14
	25.49

	8
	Skalak1 + SP
	[7, 9]
	30–8=22
	25.45

	9
	Skalak1 + clustering
	[7, 9]
	100–16=84
	25.69

	10
	Skalak1 + SP
	[7, 9]
	100–8=92
	25.73

	11
	5
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	[19]
	5
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10
	25.36

	12
	5
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Skalak
	[19]
	5
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20
	23.31

	13
	5
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Skalak
	[19]
	5
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30
	22.49

	14
	5
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Skalak
	[19]
	5
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40
	22.20

	15
	5
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Skalak
	[19]
	5
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50
	22.13

	16
	TERS
	[this paper]
	5
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50
	22.06


Table 2. Comparison of the algorithms on Remotes data

The obtained results permit for several (not too general, of course) claims.  First, the consistency criterion (Hart, Gowda–Krishna [6] with results showing the same clear pattern presented in [9]) is dubious, as in practice datasets often contain a substantial amount of noise which frequently leads consistency-based algorithms to overfitting.  On the other hand, Tomek’s algorithm, which in practice very often produces a reduced set consistent with the original reference set, offers attractive accuracy, usually very close to the accuracy of 1-NN with full reference set; the price is however weak reduction.

Skalak’s algorithm dominates over Hart’s in accuracy with 4-20 times smaller reduced reference set at the same time.  The accuracies of the local reduced set selection are even better at the same speed, especially when very aggressive reduction (equivalent to size 30 in the tests) is required.

The plain ensembles of reduced sets achieved yet better accuracies; in fact, often better than 1-NN with the full reference set.  The errors decreased monotonically with the increasing size of the components.  It should be noticed however that the classification performed by such an ensemble (5
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50 elements) is several times slower than performed by a single reduced set (in a “plain” or local selection scheme) with set size of 30.

The TERS scheme attempts to achieve accuracy comparable to the one obtained with plain ensembles, but with an increase in classification speed.  Actually, the TERS accuracy results are even very slightly better than of plain ensembles at their best.  Only the k-NN with learnt value of k yielded lower errors (a negligible difference on Ferrites data) than the TERS, but the difference in classification speed is more than one magnitude.

The interesting question now is: how fast actually is TERS classification?  Table 3 contains necessary information for such an estimation.  Note that in the case of the less-noisy dataset, i.e., Ferrites, the labels of as many as over 80% of all samples were resolved in the first stage.

	dataset
	stage 1
	stage 2
	stage 3
	stage 4
	stage 5

	Ferrites
	81.17
	5.73
	2.31
	1.22
	9.57

	Remotes
	57.42
	10.61
	5.01
	2.89
	24.07


Table 3. Percentages of test samples with classification terminated at each stage
of the cascade scheme

Taking into account the chosen values of parameters l, m and r1, …, rm, it is easy to estimate that the classification speed of TERS on Ferrites is approximately equal to the classification speed with one reduced set of 76 samples, while the respective equivalent set size for Remotes has about 113 samples (the overhead of decision making between successive stages is practically negligible compared to distance calculations in high dimensions).

If we now consider the plain ensemble of five sets each having 50 samples, does it mean the calculation of all 250 distances is necessary?  Certainly not; a simple optimization can be made: if for the first three of the five sets the (component) predictions agree, then the label for the test sample is resolved.  Similarly, the decision may be determined after obtaining predictions from four of the five sets.  On the used datasets such a quick decision evaluation decreases the classification time by about 32% (Remotes) to 35% (Ferrites).  Actually, the “short-circuit” idea may be even improved (which has not been tried), but the further speed improvements do not seem to be very significant.  To be fair, one has to notice that also in the last stage of TERS the “short-circuit” optimization idea is applicable, but the overall speed increase will be little.

Remembering those estimations are rough (as usual, much depends on middle- and low-level implementation details), we can say that the TERS with the chosen parameters is more than twice faster than the most accurate plain ensemble on Ferrites, and about 1.5 times faster on Remotes.  We believe that those results encourage for developing the idea.

5. Conclusions and future plans

The introduced cascade nearest neighbor scheme called Telescope Ensembles of Reduced Sets (TERS) has been verified on two large datasets.  It yielded lower classification errors than all its reference set reduction based competitors on both datasets, at a speed greater than the one of its closest rival in the tests, plain ensemble of five reduced sets of 50 elements each.  The success should probably be attributed to the unanimous voting criterion, which may distinguish well “easy” samples from “hard” ones.  The analysis of the internal behavior of the algorithm is yet to be done.  Also more complex cascade schemes are planned to be devised in the future, e.g., hybrids of TERS and k-NCN or k-NSN decision rules [8].  Hopefully, the accuracy of k-NN will be overcome at much higher classification speed.  Finally, the choice of the parameters should be performed according to justifiable rules.
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