
P O L I T E C H N I K A � Ó D Z K A

SZYMON GRABOWSKI

NEW ALGORITHMS
FOR EXACT AND APPROXIMATE

TEXT MATCHING

� Ó D � 2009

Contents

Streszczenie 7

Preface 8

1 Online exact string matching 11
1.1 Preliminaries . 11
1.2 Worst-case and average-case optimized algorithms 12
1.3 Modern approaches: bit-parallel simulations of NFA 18
1.4 Average-optimal Shift-Or algorithm 22

1.4.1 Relaxing q . 25
1.4.2 Handling longer patterns . 25
1.4.3 Linear worst-case time . 26
1.4.4 Implementation . 26

1.5 The Aho�Corasick algorithm . 27
1.5.1 Optimal Aho�Corasick . 28

1.6 Application of the AOSO technique in other algorithms 31
1.6.1 Pattern matching with swaps 31
1.6.2 Pattern matching with all circular shifts 32
1.6.3 (δ, γ)-matching . 33

1.7 Experimental results . 33
1.7.1 Shift-Or and Shift-Add experiments 33
1.7.2 Aho�Corasick experiments 36

1.8 Conclusions . 38

2 Online approximate string matching 41
2.1 Similarity measures and their applications 42
2.2 Basic techniques . 44

2.2.1 Dynamic programming algorithms 45
2.2.2 Algorithms based on automata 49
2.2.3 Fast Fourier transform based algorithms 49
2.2.4 Algorithms based on bit-parallelism 50
2.2.5 The �ltering approach . 51

3

4 CONTENTS

2.3 A new technique for bit-parallel algorithms with counters 52
2.3.1 Shift-Add algorithm . 52
2.3.2 Counter-splitting . 53
2.3.3 Expanding and contracting counters 55
2.3.4 Matryoshka counters . 57

2.4 Average-Optimal Shift-Add for short patterns 58
2.5 Other applications of Matryoshka counters 60

2.5.1 (δ, γ)-matching and (δ, k)-matching 60
2.5.2 Intrusion detection and episode matching 62

2.6 Global similarity measures . 65
2.6.1 The LCS problem . 65
2.6.2 LCS-related problem variants 67
2.6.3 The LCTS problem, theoretical and practical solutions . . . 69

2.7 Conclusions . 76

3 Matching with gaps 77
3.1 Preliminaries . 79
3.2 Previous work . 80
3.3 Dynamic programming . 81
3.4 Row-wise sparse dynamic programming 86

3.4.1 E�cient worst case . 86
3.4.2 E�cient average case . 87
3.4.3 Faster preprocessing . 87
3.4.4 Improved algorithm for large α 90

3.5 Column-wise sparse dynamic programming 92
3.6 Simple algorithm for (δ, α)-matching 93

3.6.1 Sublinear average case . 94
3.7 Simple algorithm for (δ, γ, α)-matching 96

3.7.1 Improving the worst case 97
3.8 Bit-parallel dynamic programming for (δ, α)-matching 98

3.8.1 Fast algorithm on average 100
3.8.2 Handling large α in O(1) time 103
3.8.3 Relaxing δ and α . 104

3.9 Bit-parallel dynamic programming for (δ, γ, α)-matching 105
3.9.1 Cut-o� . 108
3.9.2 Lazy preprocessing . 109
3.9.3 Improving the worst case for large α 111
3.9.4 Multiple patterns . 112
3.9.5 Filtering . 113

3.10 Non-deterministic �nite automata for (δ, α)-matching 113
3.11 Other models . 116

3.11.1 Handling character classes 116
3.11.2 Matching with general gaps 117
3.11.3 Matching with k mismatches 118
3.11.4 (δ, k∆, α)-matching . 118

CONTENTS 5

3.12 Transposition invariance . 119
3.12.1 Transposition invariant Simple 119
3.12.2 Transposition invariant DP 122

3.13 Experimental results for (δ, α)-matching and related problems . . . 124
3.13.1 Transposition invariance . 126
3.13.2 PROSITE patterns . 127

3.14 Experimental results for (δ, γ, α)-matching 128

4 Searching in compressed domain 130
4.1 Motivation and brief overview of the area 131
4.2 Search-supporting codes for large alphabets 135
4.3 q-gram based full-text coding with e�cient search capabilities . . . 142

4.3.1 Searching for long patterns 143
4.3.2 Searching for short patterns 145
4.3.3 Experimental results . 147

4.4 A simple technique for denser encoding of static texts 150
4.4.1 Experimental results . 151

4.5 Conclusions and future work . 152

5 Compressed full-text indexes 155
5.1 Motivation and problem aspects . 155
5.2 Classic indexing data structures . 158
5.3 Early compact text indexes . 161
5.4 Basic concepts of the FM-index . 163

5.4.1 Burrows�Wheeler transform 164
5.4.2 Search mechanism (LF-mapping) 167
5.4.3 Locating occurrences and displaying the text 168

5.5 Rank and select in theory . 170
5.5.1 Constant-time rank . 170
5.5.2 Constant-time select . 171
5.5.3 Rank and select for compressed sequences 173

5.6 Rank and select in practice . 173
5.6.1 Rank queries via popcounting 173
5.6.2 Rank queries using a single level plus sequential scan 175
5.6.3 Select queries . 176
5.6.4 SelectNext queries . 179

5.7 The wavelet tree . 180
5.8 FM-Hu�man and its variants . 182

5.8.1 Basic idea . 183
5.8.2 Locate and display . 186
5.8.3 K-ary Hu�man . 190
5.8.4 Kautz�Zeckendorf coding 192
5.8.5 Other space-time tradeo�s 192

5.9 Experimental results . 195
5.9.1 Space results . 196

6 CONTENTS

5.9.2 Counting queries . 197
5.9.3 Reporting queries . 198
5.9.4 Displaying text . 198
5.9.5 Analysis of results . 200

5.10 Recent advancements in compressed indexes 202

6 Conclusions 205

Bibliography 208

List of Symbols and Abbreviations 236

List of Figures 238

List of Tables 240

Summary 241

Charakterystyka zawodowa autora 243

Streszczenie

W rozprawie skupiono si¦ na wybranych problemach wyszukiwania dokªad-
nego i przybli»onego w tek±cie. Poj¦cie tekstu winno by¢ rozumiane szeroko,
obejmuj¡c dane w j¦zykach naturalnych, sekwencje bioinformatyczne oraz
zapisy utworów muzycznych (nutowe).

Praca skªada si¦ z pi¦ciu rozdziaªów, z których ka»dy po±wi¦cony jest
osobnemu zagadnieniu. W kolejno±ci, s¡ to: wyszukiwanie dokªadne, wy-
szukiwanie przybli»one, wyszukiwanie sekwencji z przerwami (ang. gaps),
wyszukiwanie online w tek±cie skompresowanym oraz peªnotekstowe indeksy
skompresowane. Rozprawa wnosi wkªad w rozwój ka»dego z tych proble-
mów. Ka»dy rozdziaª zaczyna si¦ jednak od przedstawienia odno±nego stanu
wiedzy.

Wiele z zaproponowanych w pracy algorytmów wykorzystuje równole-
gªo±¢ bitow¡, nowoczesn¡ technik¦ oblicze« z wykorzystaniem poszczegól-
nych bitów rejestru procesora. W szczególno±ci, zaprezentowano dwie nowe
techniki równolegªo±ci bitowej, jedn¡ maj¡c¡ na celu optymalizacj¦ przy-
padku ±redniego w wyszukiwaniu dokªadnym, drug¡ redukuj¡c¡ zªo»ono±¢
w przypadku najgorszym w algorytmach wykorzystuj¡cych liczniki. Te do±¢
ogólne techniki algorytmiczne zostaªy pomy±lnie zastosowane w szeregu kon-
kretnych znanych algorytmów wyszukiwania.

W pracy pokazano, i» do wyszukiwania sekwencji z przerwami mo»na
stosowa¢ rozliczne podej±cia, rozszerzaj¡c znacznie istniej¡cy arsenaª metod
dla problemów tej kategorii. Nowe wyniki bazuj¡ m. in. na technikach algo-
rytmicznych równolegªo±ci bitowej, programowania dynamicznego rzadkiego
i oszcz¦dnych bitowo-równolegªych symulacjach automatów NFA.

Przedstawiono równie» algorytmy wyszukiwania w danych skompreso-
wanych, cechuj¡ce si¦ zarówno wydajno±ci¡, jak i prostot¡.

Obok analiz teoretycznych, wi¦kszo±¢ algorytmów zaimplementowano
i poddano testom empirycznym, a osi¡gni¦te wyniki zwykle pozwalaj¡ zali-
czy¢ nowe metody do najefektywniejszych dla danych problemów.

7

Preface

Searching is arguably the most important of all problems that computer
science deals with. Very broadly speaking, this problem consists in reporting
occurrences of an object (key) in a database. Reporting may mean in a
particular scenario: yielding the number of its occurrences, returning their
exact locations, or merely answering `yes' if at least one match is found, and
`no' in the opposite case.

The term database used here is also very general; it can be a collection
of records, a list of integers, a catalogue of web pages, a sequence of DNA,
etc.

Those very di�erent kinds of objects stored in a database imply equally
diverse kinds of sought keys.

The seemingly very obvious notion of matching may be relaxed in many
ways, leading to many approximate matching models. Similarly, the keys
themselves may be of �generalized� form, e.g., can be described with regular
expressions.

Finally, there may be di�erent scenarios under which the search processes
will be run. The database may be static, hence it can be preprocessed to
make future searches faster, or it may be dynamic, which raises the funda-
mental question of e�cient updates. The searches may be run on a single
one-core one-CPU machine, or they may be run on a parallel platform, pos-
sibly in a distributed environment. The database may be so large that it
cannot be held entirely in main memory, hence the minimization of I/O op-
erations is a crucial task. Additionally, current theoretical models (not to
say about experimental works!) more and more often notice the fact that
computer memory nowadays is hierarchical rather than a �at (i.e., uniform-
access) von Neumann structure.

Among the search problems, a broad and important category seems to be
string matching problems, where the pattern and the database are textual.
Text, since the beginning of known history of mankind, till our digital era,

8

CONTENTS 9

remains one of the most important media of information. The previous
century even broadened the de�nition of text, which nowadays means not
only natural language (NL) messages but also bioinformatics data (e.g.,
DNA and protein sequences), music scores, program sources and structured
data, e.g., XML. Moreover, textual algorithms have some importance for
searching in and indexing images.

This thesis focuses on various exact and approximate matching problems
for textual data. The author's main contributions (usually joint e�orts) to
the �eld of string matching can be summarized as follows.

• We proposed a �striding� bit-parallel technique for the problem of ex-
act string matching, and also applications of this technique for several
other matching problems and known algorithms (e.g., Aho�Corasick
for multiple matching). Our algorithm for exact matching has optimal
average time complexity, as long as the pattern is short enough. Ex-
periments con�rm that the devised algorithms based on our technique
belong to the fastest known for the respective problems.

• We found a counter-splitting technique for the well-known Shift-Add
algorithm for matching under Hamming distance, which improves the
time complexity of Shift-Add from O(ndm log(k)/we) to O(ndm/we).
Again, this technique is very �exible, and we applied it successfully
for several other problems.

• We proposed a number of algorithms for (δ, α) and (δ, γ, α)-matching
problems, motivated by music information retrieval (MIR) applica-
tions. Our algorithms are competitive either in theory, or in practice,
or both. For those problems, complex interplays between the prepro-
cessing times and search times, and also average time and worst-case
time complexities, have been spotted and analyzed. Our algorithms
are based on bit-parallelism, sparse dynamic programming with cut-
o�, and automata.

• We showed that byte codes used earlier for e�cient text compression
on words, with support for direct pattern search, can also be success-
fully applied for non-segmented text. This has natural applications for
non-NL texts, like DNA, proteins, music scores (MIDI), but also ori-
ental languages (Chinese, Japanese, Korean), or even some European
languages (especially agglutinative ones, like Finnish).

• We presented an extremely simple compressed index based on Hu�man
coding and Burrows�Wheeler transform. This index belongs to the
FM-index family.

10 CONTENTS

The dissertation comprises �ve chapters, dedicated to various string
matching problems. Each chapter contains our own results and almost all
introduced algorithms are veri�ed experimentally, on real-world and/or syn-
thetical data.

Chapter 1 presents the most classic problem of online exact string match-
ing.

Chapter 2 is dedicated to approximate string matching, with most new
results oriented towards matching under Hamming distance or the k-mis-
matches problem.

Chapter 3, entitled Matching with gaps, deals speci�cally with a broad
class of approximate string matching problems, in which the pattern symbols
are allowed to match a wider text area than the pattern length, and some
of the symbols inside are ignored. Many matching problems with gaps are
there discussed and our own results are presented in detail.

Chapter 4 presents a relatively new paradigm of online matching, which
is matching directly in compressed text.

The last chapter covers the area of compressed full-text indexes.
This thesis could not achieve its shape without help of many people.

I am grateful to my collaborators. The most notable is Kimmo Fredriksson.
Thank you, Kimmo, not only for your ideas and hard work, but also for
your immense patience to my incompetence, laziness and frequent blunders.
Kimmo Fredriksson is also the author of most implementations of the algo-
rithms presented in the thesis. I also thank Gonzalo Navarro and Sebastian
Deorowicz; your professional approach taught me a lot, guys. I am grate-
ful to Sebastian also for helping me with typesetting this book in LATEX.
The implementations in Chapter 5 are due to Alejandro Salinger and Rafaª
Przywarski. I thank my boss at Computer Engineering Department (KIS),
Prof. Dominik Sankowski, for constant encouragement and support. Last
but not the least, I thank my wife Barbara and the rest of the family, for
the many things the so-called natural language seems helpless to express.

Chapter 1

Online exact string matching

The exact string matching is the oldest and most straightforward problem in
the �eld, with tens of papers published in the last 30 years, presenting new
algorithms (often only minor modi�cations of older ones) or, sometimes, new
analyses and insights. Although the problem seems to be (almost) closed
from the point of theory now, it is absolutely essential to any researcher in
the �eld to know the basic techniques for exact matching, since they appear
in solutions for many more complex problems (e.g., multiple string matching,
approximate string matching, phrase retrieval with an inverted index).

Our contribution (joint work with Kimmo Fredriksson) for this problem
is the design and empirical evaluation of a novel technique of sampling the
text, which gives rise to the fast average-optimal Shift-Or (FAOSO) algo-
rithm [FG05b, FG09a], being a non-trivial modi�cation of the well-known
Shift-Or algorithm [BYG89]. FAOSO is optimal in time for the average case,
can be modi�ed to yield linear (i.e., optimal) behavior in the worst case (both
results require short enough patterns), and achieves very competitive search
speed in practice. We show that the novel �ltering technique used in this
algorithm can also be applied to some other exact and approximate string
matching problems [FG09a], the latter of which will be discussed in Chap. 2.
In particular, we present the average-optimal Aho�Corasick (AOAC) algo-
rithm, which does not su�er from the limitation on the pattern length in its
average-case analysis.

1.1 Preliminaries

The main actors in this study are strings.
A string S is a sequence of symbols (characters) over a known alphabet

11

12 CHAPTER 1. ONLINE EXACT STRING MATCHING

Σ. Let the length of S be m; the string S can be written as s0s1 . . . sm−1

or S[0 . . . m − 1] (both notations are equivalent). If not stated otherwise,
we assume that the alphabet is integer, contiguous and �nite, i.e., Σ =
{0, 1, . . . , σ − 1}. The length of S is denoted by |S|. The notion of an
empty string is sometimes useful, and such string will be denoted with ε.
Obviously, |ε| = 0.

The string S1 of length m matches the string S2 i� |S2| = m and S1[i] =
S2[i] for all 0 ≤ i < m.

The concatenation of strings S1[0 . . .m1−1] and S2[0 . . . m2−1], denoted
by S1S2, is such a string S of length m1 + m2 that S[0 . . . m1 − 1] matches
S1 and S[m1 . . . m1 + m2 − 1] matches S2.

The string S[0 . . . j − 1], for any 0 < j ≤ m, is called a (non-empty)
pre�x of S. Similarly, S[j . . . m − 1], for any 0 ≤ j ≤ m − 1, is called a
(non-empty) su�x of S. Finally, S[i . . . j], 0 ≤ i ≤ j < m, is called a factor
of S. Trivially, any pre�x or su�x of S is also a factor of S.

The concatenation of m instances of the same alphabet symbol, c, will
be in short written as cm.

The exact string matching problem can be stated in the following way.
Given a pattern P [0 . . . m−1] and text T [0 . . . n−1], both made up of symbols
from an integer alphabet Σ = {0, 1, . . . , σ − 1}, report all the occurrences
of P in T , i.e. return the sequence of indexes j1 < j2 < . . . < jk such that
P [0 . . .m − 1] matches T [jl . . . jl + m − 1] for any l = 1 . . . k, or return a
negative answer if no match of P has been found.

If not stated otherwise, in average-case analyses we assume that both
the text and the pattern are obtained under the same, uniformly random,
distribution, and are independent. The probability that a given character
of the text or the pattern is ci, is 1/σ, for any i = 0 . . . σ − 1.

The logarithms used throughout this work are usually in base 2 and this
base is then omitted. In some cases, however, to stress that the base is
important, we do write it explicitly.

1.2 Worst-case and average-case optimized algorithms

The naïve (brute-force) algorithm for exact matching is to match P against
each alignment of T , e.g. from left to right, aborting character comparisons
as soon as possible. This clearly gives O(nm) worst-case time complexity,
but is of linear time on average. To see this, note that the probability that
an arbitrary pair of characters matches is 1/σ, which is less or equal 1/2,
and the probability that a pre�x of P of length k matches a given text area

1.2. WORST-CASE AND AVERAGE-CASE OPTIMIZED ALGORITHMS 13

is 1/σk, hence the expected matching pre�x length is constant (and the
constant does not exceed 2).

The algorithm's performance gets catastrophic if the pattern is highly
periodic (or more precisely, if many pre�xes of P are equal to some other
factors of P) and the text contains many partial matches, but on typical
texts, e.g., natural language ones, it fares quite well.

The danger of falling into a quadratic pathological case is reduced if the
naïve algorithm is replaced with the Karp�Rabin (KR) algorithm [KR87].
KR is a classic exact string matching technique based on signatures (al-
though the �rst application of this old idea in string matching was probably
from Harrison in [Har71], where he only checked for a pattern occurrence,
not its location, and the scheme required the text to be preprocessed). The
key idea of the algorithm is to calculate a signature (hash) based on all
the pattern characters, which is an integer stored in a single machine word.
Then, using the same hash function, signatures are calculated over slid-
ing text, in (overlapping) slices of length m, and the pattern signature is
matched against the text slice signature in O(1) time. Matches have to be
veri�ed (usually with a brute-force algorithm) but obviously no match will
be missed. An important trait of the algorithm is that the hash function can
be calculated incrementally, paying O(1) time per text character. The worst-
case time complexity of this algorithm is still O(nm) (and, unfortunately,
it is very easy to give examples which imply such behavior, e.g., P = cm,
T = cn) but on average it is O(n), with a low constant in the number of
examined characters. Still, even in the best case the KR algorithm needs
O(n) time. A number of much more practical variations on the theme of
Karp�Rabin were recently proposed by Lecroq [Lec07]. He actually adapted
the classic Wu�Manber multiple string matching algorithm [WM94] to the
case of a single pattern. The basic idea is to calculate hash values over all the
possible q-grams, i.e. strings of length q, and use them to shift the pattern
appropriately (or test for an occurrence if no shift is implied). The average
time behavior is sublinear in n, but the worst case remains quadratic. Still,
the family of algorithms has been designed for practical rather than theo-
retical purposes and the results reported in [Lec07, FL08] are competitive,
especially for small alphabets.

In 1977 Rivest showed [Riv77] that any exact string matching algorithm
must examine at least n−m+1 characters from the text, which constitutes
the Ω(n) worst-case lower bound. A natural question arises then: is this
lower bound tight?

The �rst major algorithm solving (positively) this problem was published
by 1977 by Knuth, Morris and Pratt [KMP77], and is often denoted in the

14 CHAPTER 1. ONLINE EXACT STRING MATCHING

literature with the initials of its authors, KMP.1 The history of this discovery
dates back as early as 1970 and is interesting in itself; the curious reader is
referred to [Ste92, p. 8].

The underlying idea of KMP is to avoid backtracking in the text string
in the event of a mismatch. The text is scanned from left to right, and
at the �rst mismatching character, an O(1)-time lookup is performed into
a precomputed next table, which tells how far to shift the pattern before
the next character comparison. It is shown that precomputing the next
table can be done in O(m) time, independently of the alphabet size. KMP
algorithm works in O(n) worst-case time (more precisely, performs not more
than 2n − 1 character comparisons), hence being a proof that the Rivest's
lower bound is tight. The main disappointment with KMP is however that
it never compares less than n characters. Ironically, according to [BYN04],
on most real-world texts (e.g., English, proteins) it is about twice slower
than the naïve algorithm.

Interestingly, another � practical, this time � breakthrough result was
published in the same year, 1977. The algorithm of Boyer and Moore (BM)
[BM77] was the �rst one allowing to skip large portions of text during the
search. In practice, for not very small alphabets and at least middle-sized
patterns, this algorithm is several times faster than e.g. the naïve (or KMP)
algorithm. Roughly speaking, if the alphabet size is not less than the pattern
length, the BM algorithm reaches O(n/m) time complexity on average. Its
worst case is superlinear in n, a theoretical de�ciency that was overcome in
[AG86]. A novel idea in BM was to match the pattern against a piece of
text from right to left. The algorithm is based on two heuristics which make
use of knowledge obtained in the pattern preprocessing.

The Boyer�Moore algorithm is the �rst and one of the most prominent
examples of the search technique called �ltering. The idea of �ltering is
to slide the pattern quickly over large areas of text using some heuristic
(or several heuristics) to discard them as potential matches. The heuristic
should be fast but its answers are only negative, i.e. that a given piece of text
is not a match. If the heuristic cannot give such an answer, it means that the
given text area must be veri�ed, i.e. the pattern must be matched against
it using some other algorithm, often a brute-force one. Algorithms based
on �ltering are often very practical, and used for many search problems.
The commonsense requirement for them is to have a both fast and selective
heuristic, i.e. such that rejects a large enough fraction of the text, on average.

1As a historical remark, we note that essentially the same algorithm was obtained
several years earlier by Gosper [BGS72], although no analysis was given.

1.2. WORST-CASE AND AVERAGE-CASE OPTIMIZED ALGORITHMS 15

Alg. 1 BMH(T, n, P,m).
1 for i ← 0 to σ − 1 do d[i] ← m
2 for i ← 0 to m− 2 do d[P [i]] ← m− 1− i
3 i ← −1
4 while i + m < n do
5 while i + m < n and T [i + m] 6= P [m− 1] do
6 i ← i + d[T [i + m]]
7 if P [0 . . . m− 2] = T [i + 1 . . . i + m− 1] then report match
8 i ← i + d[T [i + m]]

_ A B C D E
3 1 3 2 3 3

BAD_CAB
CAB
0123456

BAD_CAB
CAB

0123456

BAD_CAB
CAB

0123456
Array d

(i) (ii) (iii) (iv)

Figure 1.1: BMH example

Still, �ltering techniques are never winners in the worst case.
The BM algorithm is relatively complicated. In 1980 Horspool presented

a simpli�ed variant (BMH) [Hor80], which is based on a single heuristic.
The auxiliary table is of the size of the alphabet, and a lookup for the text
character aligned with the rightmost pattern character determines the shift
(may be 0, and then the text area is inspected character-by-character). The
BMH algorithm is O(n/ min(m, σ)) on average but O(nm) in the worst case.
Although BMH yields shorter shifts on average than the original BM, it is
somewhat faster in practice, due to reduced complexity. Alg. 1 presents the
pseudocode for the Boyer�Moore�Horspool (its variant from [BYN04]), and
Fig. 1.2 illustrates its preprocessing and search on an example.

We will comment brie�y the example. The pattern P is CAB, the text T
is BAD_CAB. The integer alphabet corresponds to {_, A, B, C, D, E}. Figure (i)
shows the preprocessing table d. On Fig. (ii) we see that the aligned text
character (D) does not occur in P , hence the window will be shifted by
d[D] = |P | = 3. Figure (iii) shows a mismatch again, the window will be
shifted by d[A] = 1. Finally, on Fig. (iv), there is a match at the righmost
location, the pre�x of P is veri�ed in the current text area, successfully,
hence a pattern match is reported. P will be shifted by d[B] = 3, which
reaches beyond the text and hence the algorithm terminates.

There are more than ten other algorithms from the Boyer�Moore family
[Ste92, CL04] but the performance di�erences between them are slight and
contradictory reports can be found in the literature. Perhaps the main

16 CHAPTER 1. ONLINE EXACT STRING MATCHING

culprit of this confusion are di�erent hardware platforms (especially CPU's)
used in di�erent experiments. Nowadays, it seems crucial to compare a
new algorithm against the competitors on at least two di�erent platforms,
which is especially important for the exact string matching problem, since
the processing speeds for this problem are high enough (often above 1GB/s)
to be vitally dependent on the hardware details.

Several original ideas applicable to the algorithms from the BM family
deserve a presentation. One of them is shifting the pattern after a mismatch
based not on T [j] aligned with P [m−1] (as in BMH), but on the next char-
acter, T [j +1], as no match can be missed in this way [Sun90]. An extension
of this idea was presented in [BR99]. Baeza-Yates [BY89b] suggested a care-
ful ordering of pattern symbol comparisons, based on statistical knowledge
about a given non-uniformly distributed text (e.g., English), to maximize the
shifts or earlier detection of a mismatch, on average. In other words, rarer
characters in the pattern (e.g., z or x in English) could be compared before
more frequent ones (e.g., e or t). This approach was taken in the just cited
work by Sunday [Sun90], in which he examined several variants. Along these
lines, Smith developed an adaptive algorithm [Smi91] which works with-
out any prior knowledge about the given text. The skip search algorithm
[CLP98] samples the text at regular intervals of size m, and uses lists (�buck-
ets� in the original terminology) of occurrences in the pattern for all the sym-
bols of the alphabet, to brute-force check all the valid alignments. This is,
in a way, a reversal of the common behavior of the BM algorithms: the skip
search always samples the text in intervals of m characters (other algorithms
do it only in the best case), but the veri�cation is performed typically for
several alignments of the pattern against a piece of the text (other algorithms
do it only once per a shift). The average time complexity of this algorithm is
like in BMH, that is, O(n/ min(m,σ)), and the worst case remains quadratic.

An interesting feature of the algorithms from the BM family is that they
run faster with growing pattern length or alphabet size, and they bene�t
from longer shifts in those cases. The other side of this coin is also that
e.g. the BMH algorithm is relatively weak for DNA strings, since its av-
erage shift is only approximately four characters (no matter how long the
pattern is, provided that m ≥ 4). A simple technique to mitigate this prob-
lem was considered yet in the works of Knuth, Morris and Pratt [KMP77],
and Boyer and Moore [BM77]. It is possible to group characters into super-
characters (also called q-grams): pairs, or triples etc., e�ectively enlarging
the alphabet. For example, using triples over DNA increases the e�ective
alphabet size to 43 = 64. The pattern gets shorter this way (but also the
text gets respectively shorter, expressing its length in supercharacters), the

1.2. WORST-CASE AND AVERAGE-CASE OPTIMIZED ALGORITHMS 17

preprocessing costs grow, and the search algorithm requires some modi�ca-
tions, but on the overall this strategy pays, if the original alphabet is small
[BY89b, KST94, TP97]. It is easy to notice that the search time of the BMH
algorithm working on q-grams gets O(σq + m + qn/min(m,σq)), which is
minimized for q = logσ m and �nally we get the O(m + n logσ(m)/m) com-
plexity [BYN04], which is optimal on average [Yao79].

Interestingly, there are algorithms achieving O(n) worst-case time using
only O(1) additional space. We say �additional�, since the pattern itself
must be kept in the operating memory, requiring O(m) space. The �rst
such algorithm, with the number of character comparisons bounded with
5n, was given by Galil and Seiferas in 1983 [GS83]. Further results along
these lines decreased the worst-case constant with the number of character
comparisons [CP91, Bre93, GPR95]. Finally, Crochemore et al. [CGR99]
presented an algorithm with sublinear average time (namely O(n/ log m))
with guaranteed linear-time worst case and working with constant addi-
tional space, independently of the alphabet used. They also posed a ques-
tion, still open, what is the minimum amount of needed space for any exact
string matching algorithm reaching the average-optimal time complexity,
i.e., O(m + n logσ(m)/m). All of those algorithms are quite complicated
and of theoretical interest only. Therefore, researchers are more interested
in developing algorithms with optimal average-case performance, or at least
being close to optimal in this aspect, and running fast in practice. The space
usage, even if superlinear in m, is rarely a hindrance, apart from very large
patterns or very large alphabets. All the Boyer�Moore algorithms, presented
above, belong to this class, still, the �rst algorithm reaching the average-
case lower bound, O(m + n logσ(m)/m), was Backward DAWG Matching
(BDM) [CCG+94]. Some of its variants, TurboBDM and TurboRF, pre-
sented in the same work, are also worst-case optimal. Those algorithms
build the su�x automaton of the reverse pattern P r, that is, a deterministic
�nite automaton recognizing all su�xes of the reverse pattern, i.e. all pre-
�xes of P . Unfortunately, BDM is also not very practical: for not very small
alphabets and short or moderate-length patterns, it is easily outperformed
by e.g. BMH [NR00, BYN04]. Another signi�cant algorithm, a more prac-
tical alternative to BDM, was Backward Oracle Matching (BOM) [ACR99],
which recognizes not only all factors of the reverse pattern, but also some
other strings (an automaton with this property is called an oracle in string
matching literature). It is not an obstacle, since the only string of length
at least m recognized by the oracle is the reverse pattern itself. BOM is
average-optimal but quadratic in the worst case in time, and with O(m)
preprocessing space and time. Recently, two new variants of BOM were pre-

18 CHAPTER 1. ONLINE EXACT STRING MATCHING

sented [FL08] (one of them incorporates Sunday's idea of using the forward
character for shifting [Sun90] that we mentioned above), which are not only
faster than the original idea (sometimes about twice) but in many cases
achieve best results among the tested algorithms, in the cited work.

It is interesting that the well-known lower bound on the number of char-
acter comparisons, O(n logσ(m)/m), proved by Yao in 1979 [Yao79], can
actually be �broken� in practice, which obviously can be achieved only for
the price of changing the model of computation. It is possible to use super-
characters, an idea that we presented a few paragraphs above, with a purpose
to process O(logσ m) original symbols in O(1) time. The requirement how-
ever is that the input text is packed densely enough, ideally dlog2 σe bits
per character. If this input condition is met, then it is possible to achieve
O(n/m) time on average, and this was shown by Fredriksson [Fre02] whose
algorithm is a superalphabet simulation of a su�x automaton. Using the
same assumptions, very recently Bille [Bil09] showed a KMP variant where
symbol packing led to O(n/ logσ n + m + occ) worst-case time, where occ is
the number of matches.

1.3 Modern approaches: bit-parallel simulations of NFA

A classical approach to pattern search is using �nite automata. The non-
deterministic �nite automaton (NFA) for recognizing a pattern P has only
|P | + 1 states and very simple and regular structure. Formally speaking,
the automaton recognizes language Σ∗P , i.e., all strings ending with P .
Still, as this automaton is non-deterministic, each state of it can be either
active (that is, corresponding to a matching pattern pre�x), or inactive, and
with each text character all the states have to be updated. Therefore, the
algorithm's complexity is O(nm), even in the average case.

A possibility to reduce the search time is to convert the NFA into a
deterministic automaton (DFA). Deterministic automata are such that have
only one active state at a time. Such a conversion can always be done,
but the problem with DFA's is that they may need exponential space (and
build time). In our example, building the DFA needs O(mσ) both space
and time, which is usually acceptable. The worst- and average-case time
of this algorithm is thus O(mσ + n). Actually, KMP algorithm is basically
a smarter variant of such a DFA: what is improved in KMP is the space
occupancy, decreased to O(m). Another economical implementation of the
DFA recognizing our pattern is Simon's algorithm [Sim93], which has very
similar properties to KMP, only the maximum number of comparisons for a

1.3. MODERN APPROACHES: BIT-PARALLEL SIMULATIONS OF NFA 19

single text character is slightly reduced (but both algorithms have the same
total number of character comparisons in the worst case, namely 2n − 1).
Other improvements to KMP algorithm from the early 1990s reduced its
total worst-case number of comparisons to 3/2n [Col91, AC91], 4/3n [GG92],
and even n+(n−m)8/(3(m+1)) [CH92] (for online algorithms). Note that
in the last result the constant in front of n in the number of comparisons
gets arbitrarily close to 1, with growing pattern length. Nevertheless, the
upper and lower bounds for this problem still do not match [CH97].

Let us get back to the non-deterministic automaton. It is slow because it
needs to process many states at a time. A simple but profound idea to speed
up this process drastically, was given in Baeza-Yates' PhD in 1989 [BY89a].
The idea, called later bit-parallelism, was based on a very simple observation
that in a typical computer architecture the CPU works with registers which
have many bits (usually 16 in those times, and 32 or 64 nowadays). If
we can represent the states of the automaton with individual bits (storing
the information if a given state is active or inactive), then the search time
complexity can be divided by factor w, denoting the number of bits in a
machine word (CPU register). Can we achieve it? The answer is positive.
Soon later, Baeza-Yates and Gonnet [BYG89] presented an algorithm called
Shift-Or, being a bit-parallel simulation of the NFA, and solving the string
matching problem in O(ndm/we) worst- and average-case time.2 In 1992,
Wu and Manber [WM92b] presented a related algorithm, Shift-And, to solve
the same problem, with the same complexity. Note that these algorithms
work in linear time as long as the pattern is short enough (no speed penalty
even in the worst case, as long as m is not greater than e.g. 32). Both
algorithms are very similar in principle, only di�er in internal representations
of the state vectors and the update (transition) functions. Shift-And is
somewhat slower than Shift-Or, thus we are not going to describe it.

Alg. 2 presents the pseudocode of Shift-Or. In the preprocessing, in lines
1�2, a table B, having one bit-mask entry for each alphabet symbol c ∈ Σ,
is built. The bit-vectors of B obtain unset bits only at the positions of the
occurrences of a given character in the pattern string. More formally, for
0 ≤ i ≤ m − 1, the mask B[c] has ith bit set to 0, i� P [i] = c. These bits
correspond to the transitions of the implicit automaton. That is, if the bit
i in B[c] is 0, then there is a transition from the state i to the state i + 1
with character c.

Also, the state vector D is initialized. The ith bit of the state vector is

2It is not widely known that the idea of Baeza-Yates and Gonnet was a rediscovery
of the algorithm by Dömölki, invented yet in 1964 [Döm64].

20 CHAPTER 1. ONLINE EXACT STRING MATCHING

Alg. 2 Shift-Or(T, n, P,m).
1 for i ← 0 to σ − 1 do B[i] ← ∼0
2 for i ← 0 to m− 1 do B[P [i]] ← B[P [i]] & ∼(1 << i)
3 D ← ∼0; mm ← 1 << (m− 1); i ← 0
4 do
5 D ← (D << 1) | B[T [i]]
6 if (D & mm) 6= mm then report match
7 i ← i + 1
8 while i < n

set to 0, i� the state i is active. Initially each bit is set to 1 (line 3 in Alg. 2).
For each text symbol c the vector is updated by D ← (D << 1) | B[c]. This
simulates all the possible transitions of the non-deterministic automaton in
a single step. If after the update the mth bit of D is zero, then there is an
occurrence of P .

The Shift-Or preprocessing needs O(σm) bits of space and O(σdm/we+
m) time. Typically, this is negligible compared to the text size. The search
loop (lines 4�8) runs in O(n) as long as m = O(w).

Fig 1.3 serves as an illustration. The input data are: P = TTTCATTC,
T = AGCTTTTCATTCTGAC, and w = 8 is assumed. (i) The preprocessing table
B. Overall, it contains m = 8 zeros. (ii) Main phase of the algorithm. The
columns, appearing from left to right, correspond to the state vector D. The
zero in the lowest row denotes a match at position 11.

Since 1989, bit-parallelism has been applied for numerous string match-
ing problems, often leading to very competitive practical algorithms. With-

B[A] = 11110111
B[C] = 11101110
B[G] = 11111111
B[T] = 00011001

0123456789012345
AGCTTTTCATTCTGAC

T 1110000110010111
T 1111000111011111
T 1111100111111111
C 1111111011111111
A 1111111101111111
T 1111111110111111
T 1111111111011111
C 1111111111101111

(i) (ii)

Figure 1.2: Shift-Or example

1.3. MODERN APPROACHES: BIT-PARALLEL SIMULATIONS OF NFA 21

out a doubt, this is one of the most important approaches to designing
algorithms in the string matching �eld.

The elegance of Shift-Or lies in its �exibility. It can be easily adapted
for some extended search problems, without a�ecting the essential search
mechanism. For example, handling patterns with character classes (i.e.,
such that for any i = 0 . . . m− 1, P [i] may represent a speci�ed subset of Σ
rather than a single symbol) is here trivial, as it only requires a modi�cation
in line 2. A related but di�erent problem is multiple pattern matching.
Solving this problem with Shift-Or consists in superimposing the patterns
(let us assume for simplicity they are of equal length), i.e. storing at each
position i the class of characters occurring at position i in at least one
pattern from the given set. After doing that, the same procedure as just
described (with modi�cation in line 2 of Alg. 2), is run. The only di�erence
now is that the reported positions may be false matches and thus require
a veri�cation. Another application of the Shift-Or machinery for multiple
matching is possible if the patterns are short, and then the search states for
several of them �t a single machine word, without superimposing [HFN05].

Several years ago, Fredriksson [Fre03] adapted Shift-Or for superalpha-
bets, and presented an algorithm running in O(nm/(qw) + occ) time, using
O(σq) space, where q is the number of original symbols in a supercharacter,
and occ the number of matches. In his tests, the search performance for
DNA and pattern lengths m = 15 was improved almost twice for q = 4, and
even more than sixfold if as many as eight symbols were grouped (the output
alphabet size was thus 48 = 65 536). The latter case, however, needed pack-
ing the symbols in text beforehand, so, for most existing DNA repositories,
cannot be considered really online (and packing the symbols on the �y is
likely to ruin all the speed improvement).

Shift-Or is, in a way, equivalent to KMP algorithm. The latter is a
smart implementation of a plain DFA recognizing a given pattern, while the
former is a smart (bit-parallel) implementation of an equivalent NFA. The
same relation binds BDM and BNDM algorithms. BNDM (Backward Non-
deterministic DAWG Matching) [NR00] uses the same BDM algorithm but
its implementation consists in simulating the NFA in a bit-parallel manner
instead of building the original DFA. BNDM is much simpler than BDM to
implement, and also works faster in practice, apart from long patterns. For
small alphabets and middle-sized patterns, BNDM belongs to the fastest
algorithms. Its average search complexity is O(dm/wen logσ(m)/m), i.e.
optimal as long as the pattern size is not much larger than the machine
word size. Alg. 3 presents the pseudocode for SBNDM (Simpli�ed BNDM)
[Nav01b, PT03], a variant of BNDM which o�ers reduced shifts on average,

22 CHAPTER 1. ONLINE EXACT STRING MATCHING

Alg. 3 Simpli�ed-BNDM(T, n, P,m).
1 for i ← 0 to σ − 1 do B[i] ← 0
2 for i ← 0 to m− 1 do B[P [i]] ← B[P [i]] | (1 << (m− 1− i))
3 /* let x be the length of the longest pre�x of P which is also a su�x of P */
4 s0 ← m− x
5 pos ← 0
6 while pos ≤ n−m do
7 D ← ∼0; j ← m
8 do
9 D ← (D << 1) & B[T [pos + j]]
10 j ← j − 1
11 until D = 0 or j = 0
12 if D 6= 0 then
13 report match
14 pos ← pos + s0

15 else pos ← pos + j + 1

but also with a tighter main loop, which resulted in about 10% speedup over
BNDM in the cited work. The preprocessing is performed in the �rst two
lines. Note that the B bit-vectors are inverse of the analogous bit-vectors
in Shift-Or algorithm. The internal while loop is run as long as the state
vector D is non-zero. D = 0 means that the automaton is in a dead state,
when a shift just beyond the non-occurring factor is performed (line 15).

Very recently, Durian et al. [DHPT09] presented an extensive evaluation
of several string matching algorithms, in which the best results were usually
obtained by q-gram based variations of BNDM and SBNDM, developed by
the authors (cf. also [HD05]). This line of research combines the concept of
bit-parallel simulation of NFA with using a superalphabet.

A weakness of BNDM is its quadratic behavior in the worst case, which
contrasts with e.g. Shift-Or. A few solutions for this problem, i.e., BNDM
variants with linear worst case (as long as m = O(w)), are known, e.g.
LBNDM [HF04].

1.4 Average-optimal Shift-Or algorithm

In this section, we present a Shift-Or variant able to skip text characters, and
we show that its average-case time complexity is optimal for short patterns.
Then we also show a faster implementation which is called fast average-
optimal Shift-Or (FAOSO). Experimental results show that our algorithm
belongs to the fastest for a wide range of text kinds (DNA, English, proteins)
and pattern lengths [FG05b, FG09a].

1.4. AVERAGE-OPTIMAL SHIFT-OR ALGORITHM 23

P a b c d e f

i p
T x x a b c d e f x x x x

P 0 a d

P 1 b e

P 2 c f

P ∗ a d b e c f

Figure 1.3: AOSO example

Our algorithm takes a parameter q, and from the original pattern we
generate a set P of q new patterns P = {P 0, . . . , P q−1}, each of length
m′ = bm/qc, as follows:

P j [i] = P [j + iq], j = 0 . . . q − 1, i = 0 . . . bm/qc − 1.

In other words, we generate q di�erent alignments of the original pattern P ,
each alignment containing only every qth character. The total length of the
patterns P j is qbm/qc ≤ m. For example, if P = abcdef and q = 3, then
P 0 = ad, P 1 = be and P 2 = cf.

Assume now that P occurs at T [i . . . i + m − 1]. From the de�nition of
P j it directly follows that

P j [h] = T [i + j + hq], j = i mod q, h = 0 . . . m′ − 1.

This means that we can use the set P as a �lter for the pattern P , and that
the �lter needs only to scan every qth character of T .

Fig. 1.3 illustrates. Assume that P = abcdef occurs at text position
T [i . . . i + m− 1], and that q = 3. The current text position is p = 10, and
T [p] = b. The next character the algorithm reads is T [p + q] = T [13] = e.
This triggers a match of P p mod q = P 1, and the text area T [p − 1 . . . p −
1 + m− 1] = T [i . . . i + m− 1] is veri�ed.

The set of patterns can be searched simultaneously using the Shift-Or
algorithm, as long as qm′ ≤ w. All the patterns are preprocessed together,
as if they were concatenated. For our example pattern, P = abcdef, we
e�ectively preprocess a pattern P ′ = P 0 P 1 P 2 = adbecf. Alg. 4 gives the
code for preprocessing and �ltering algorithms. If the pattern P j matches,
then the ((j +1)m′)th bit in D is zero. This is detected with (D & mm) 6=
mm, where mm has every ((j + 1)m′)th bit set to 1. These bits have also

24 CHAPTER 1. ONLINE EXACT STRING MATCHING

Alg. 4 Average-Optimal-Shift-Or(T, n, P, m, q).
1 for i ← 0 to σ − 1 do B[i] ← ∼0
2 h ← 0; mm ← 0
3 for j ← 0 to q − 1 do
4 for i ← 0 to bm/qc − 1 do
5 B[P [iq + j]] ← B[P [iq + j]] & ∼(1 << h)
6 h ← h + 1
7 mm ← mm | (1 << (h− 1))
8 D ← ∼0; i ← 0
9 do
10 D ← ((D & ∼mm) << 1) | B[T [i]]
11 if (D & mm) 6= mm then Verify(T, i, n, P, m, q, D)
12 i ← i + q
13 while i < n

Alg. 5 Verify(T, i, n, P,m, q,D).
1 D ← (D & mm) ∧ mm
2 while D 6= 0 do
3 s ← blog2(D)c
4 c ← −(bm/qc − 1) q − bs/bm/qcc
5 if P [0 . . . m− 1] = T [i + c . . . i + c + m− 1] then report match
6 D ← D & ∼(1 << s)

to be cleared in D before the shift operation (D & ∼mm), to correctly
initialize the �rst bit corresponding to each of the successive patterns.

Whenever an occurrence of P j is found in the text, we must verify if P
also occurs, with the corresponding alignment. To e�ciently detect which
patterns in P match, we �rst set D ← (D & mm) ∧ mm, i.e. the ((j +
1)m′)th bit in D is now one if P j matches, and all other bits are zero. Now
s ← blog2 Dc gives the index of the highest bit set in D, and therefore j is
bs/m′c, which is our alignment o�set, see Fig. 1.3. The corresponding text
position is then veri�ed. Finally, we clear the bit s in D. This is repeated
until D becomes zero, indicating that there are no more matches. Note that
computing blog2 xc can be done very e�ciently in modern computers, e.g. by
casting x to real number, and extracting the exponent from the standardized
�oating point representation. Still, in the RAM model of computation we
may instead naïvely erase at most m′ bits of D, in total time O(m′) over the
veri�cation loop, and the analysis below shows it does not hurt the overall
complexity. Alg. 5 gives the veri�cation code.

The �ltering time of Alg. 4 is O(n/q). The �lter searches the exact
matches of q patterns, each of length bm/qc. Assuming that each charac-
ter occurs with probability 1/σ, the probability that P j occurs in a given

1.4. AVERAGE-OPTIMAL SHIFT-OR ALGORITHM 25

text position is (1/σ)bm/qc. A brute-force veri�cation cost is in the worst
case O(m) (and only O(1) on average, but using the pessimistic bound does
not deteriorate the �nal obtained complexity and simpli�es the analysis).
To keep the total time at most O(n/q) on average, we select q so that
nm/σm/q = O(n/q). This is satis�ed for q = m/(2 logσ m), where the veri-
�cation cost becomes O(n/m) and �ltering cost O(n logσ(m)/m). The total
average time is then dominated by the �ltering time, i.e. O(n logσ(m)/m),
which is optimal.

In the following sections, we describe e�cient applications of the above
scheme for several string matching problems.

1.4.1 Relaxing q

The performance of all the algorithms we are going to present depends on
the choice of q. Our analyses assume uniform distribution of characters,
which is not a problem in most practical cases. For instance, good results
for English language can be obtained by assuming uniform distribution for
σ ≈ 16 [NR02]. The real problem is that for some texts the distribution
could change abruptly, and thus there is no single optimal q.3

If this becomes an issue, we can proceed as follows (this will work for all
our algorithms):

• Compute the value of q assuming uniform distribution.
• Do all the precomputations for q′ ∈ {1, 2, 3, . . . , q, . . . , m}.
• Initialize q′ = q, and start searching, using q′.
• During the search, if the veri�cation algorithm is reading signi�cantly

more characters than the �ltering algorithm, then decrease q′.
• In the opposite case, i.e., if the �ltering algorithm is reading sig-

ni�cantly more characters than the veri�cation algorithm, then in-
crease q′.

The bookkeeping of the above operations is simple, and adds only a constant
factor overhead to the whole algorithm.

1.4.2 Handling longer patterns
If qm′ > w, we must use more computer words, and the running time is
then multiplied by O(dqm′/we) = O(dm/we), i.e. the average time becomes
O(n logσ(m)/w).

3The problem and the sketch of the solution was pointed out by G. Navarro, priv.
comm., 2005.

26 CHAPTER 1. ONLINE EXACT STRING MATCHING

However, the trick used in [PT03] to make BNDM work with m > w
can be applied to our algorithms too. The idea is to partition the pattern
into r = bm/hc consecutive parts. The length of each part is now h =
b(m− 1)/wc + 1. All the h characters of each part are then superimposed
into a single character class. The resulting r character classes are then
concatenated to form a single pattern of length r. This pattern �ts into
a single computer word, and it can be searched by reading only every hth
character of the text. This turns any algorithm, where it is applied to, into
a �lter, so the potential matches must be veri�ed. This technique permits
long patterns for the average optimal Shift-Or as well. The result is an
algorithm with O(n logσ/h(m)/m) time on average. This is not optimal any
more, but for σ À h should work quite well.

1.4.3 Linear worst-case time
The worst-case running time of Alg. 4 is O(nm). However, the veri�cation
algorithm is easy to combine with standard Shift-Or, so that the veri�cations
take at most O(n) total time. This is done as follows. Whenever we must
verify a pattern occurrence, we do it with Shift-Or. The last text position
veri�ed is saved in a variable, as well as the state vector D (for plain Shift-
Or). If the next veri�cation area overlaps with the previous, we restore the
Shift-Or search state from the previous veri�cation. Otherwise, if the next
veri�cation area starts after the previous ended, we reinitialize the Shift-Or
search state. The veri�cation algorithm then reads every text character at
most once, and therefore the time is at most O(n) (or O(ndm/we) for long
patterns). However, if the veri�cation time becomes an issue, the �lter does
not work well, and one could use plain Shift-Or just as well.

1.4.4 Implementation
In modern pipelined CPUs branching is costly. In Alg. 2 there are two
conditionals in the search code; �rst to detect the matches, and the second
to check the end of the input. A simple way to avoid these to some degree
is to unroll the line 5, i.e. repeat the code

D ← (D << 1) | B[T [i]]

inline several, say U , times (with increasing o�sets for the variable i). This
means that the bit m− 1 of D, indicating on occurrence, will be over�owed
due to the repeated shifts, and hence in line 6 we must detect if any of the

1.5. THE AHO�CORASICK ALGORITHM 27

Alg. 6 Fast-Shift-Or(T, n, P, m).
1 for i ← 0 to σ − 1 do B[i] ← ((1 << m)− 1) << (w − U −m)
2 for i ← 0 to m− 1 do B[P [i]] ← B[P [i]] & ∼(1 << (w − U −m + i))
3 D ← ∼0; i ← 0
4 while i < n do
5 for r ← 0 to U − 1 do D ← (D << 1) | B[T [i + r]]
6 if ∼D >> (w − U) 6= 0 then report matches
7 i ← i + U

bits m − 1..m + U − 1 is zero. This means that we need U − 1 extra bits,
and the pattern length is therefore limited to m ≤ w − U + 1.

The second optimization involves detecting the matches. Line 6 in Alg. 2
involves a variable mm. This can be avoided if the bit vectors are aligned so
that the highest bit is in position w−U +1, instead of in position m+U−1.
This means that the matches can be detected with ∼D >> (w − U) 6= 0,
which is e�cient if U is constant.

These two simple optimizations (shown in Alg. 6) give about 2�5× speed-
up for standard Shift-Or (Alg. 2), depending on the architecture. The line
5 in Alg. 6 is automatically inlined by compilers, for small constant U .

Unrolling speeds-up also the Optimal Shift-Or, but the second opti-
mization cannot be applied in this case, since the bit positions indicating
the matches are not consecutive. The unrolling technique uses U − 1 ex-
tra bits per pattern, so we need q(U − 1 + bm/qc) bits in total, which is
O(m(U + logσ m)/ logσ m) with the optimal q. Alg. 7 gives the code.

Finally, observe that while unrolling is well suited to Shift-Or, the bene-
�ts are negligible e.g. for BNDM algorithm, since the more complex control
logic cannot be avoided.

1.5 The Aho�Corasick algorithm

The Aho�Corasick (AC) algorithm [AC75] is a multiple string matching
algorithm that runs in O(n) worst-case time. Our application of the AC
technique may serve both for single and multiple exact string matching. We
brie�y review how the algorithm works, more details can be found in [AC75].
The algorithm builds a �nite state automaton recognizing the input pattern
set. Basically, the automaton is a trie of all the r patterns, augmented with
�fail� transitions. Hence the automaton has O(rm) states. Let label(s) be
the label (substring) spelled out by the path from the initial state (root of
the trie) to state s (a node of the trie). For a state s, the fail transition
leads to state (node in the trie) s′, such that label(s′) is the longest su�x

28 CHAPTER 1. ONLINE EXACT STRING MATCHING

Alg. 7 Fast-Average-Optimal-Shift-Or(T, n, P, m, q).
1 for i ← 0 to σ − 1 do B[i] ← ∼0
2 h ← 0; mm ← 0
3 for j ← 0 to q − 1 do
4 for i ← 0 to bm/qc − 1 do
5 B[P [iq + j]] ← B[P [iq + j]] & ∼(1 << h)
6 h ← h + 1
7 for r ← 0 to U − 1 do
8 mm ← mm | (1 << (h− 1))
9 h ← h + 1
10 h ← h− 1
11 D ← ∼mm; i ← 0
12 do
13 for r ← 0 to U − 1 do D ← (D << 1) | B[T [i + rq]]
14 if (D & mm) 6= mm then Verify(T, i, n, P, m, q, U, D)
15 D ← D & ∼mm
16 i ← i + Uq
17 while i < n

of label(s) that is also a pre�x of some pattern in the set. The resulting
automaton can be used to search for every occurrence of the stored patterns
from text T ; the text symbols are read one by one, and for each symbol
we advance using the trie transitions if a matching transition exists, if not,
we follow the fail transitions until we reach the initial state, or a matching
transition is found. If the automaton goes through a node that corresponds
to a stored pattern, an occurrence is found. It is easy to see that the whole
process takes only O(n) steps.

Note that for each �fail� transition and alphabet symbol we can precom-
pute the state where the symbol leads. This complicates the preprocessing,
but searching algorithm becomes simpler and more e�cient (in practice) as
every state has an outgoing transition for every alphabet symbol and fail
transitions become obsolete. However, the space becomes O(rmσ).

Alg. 8 shows the pseudocode for preprocessing. The code builds the trie
breadth-�rst, and simultaneously builds the full automaton directly. In the
end, state 0 is the initial state. Each state s has a transition with symbol
c stored as AC.δ[s][c]. The set AC.id[s] stores the set of pattern numbers
that match for the state s.

1.5.1 Optimal Aho�Corasick
Again recall that we partition P to q patterns, P 0, . . . , P q−1. It should be
clear that we can search for each P i using AC, and adapting it for skipping

1.5. THE AHO�CORASICK ALGORITHM 29

Alg. 8 Build-AC(P, r).
1 State ← 0
2 queue1 ← 1; queue2 ← 0
3 for i ← 0 to r − 1 do L[i] ← 0; ps[i] ← 0
4 done ← false
5 while not(done) do
6 done ← true
7 for i ← 0 to r − 1 do
8 if L[i] < |Pi| then
9 done ← false
10 c ← Pi[L[i]]
11 if AC.δ[ps[i]][c] = fail then
12 State ← State + 1
13 AC.δ[ps[i]][c] ← State
14 ps[i] ← AC.δ[ps[i]][c]
15 L[i] ← L[i] + 1
16 if L[i] = |Pi| then AC.id[ps[i]] ← AC.id[ps[i]] ∪ {i}
17 while queue1 ≤ queue2 do
18 for c ← 0 to σ − 1 do
19 s ← AC.δ[queue1][c]
20 if s 6= fail then
21 AC.fail[s] ← AC.δ[AC.fail[queue1]][c]
22 AC.id[s] ← AC.id[s] ∪ AC.id[AC.fail[s]]
23 else
24 AC.δ[queue1][c] ← AC.δ[AC.fail[queue1]][c]
25 queue1 ← queue1 + 1
26 queue2 ← State
27 return AC

text symbols can be done precisely as for Shift-Or. That is, the automaton
is built for the q patterns P i, and only every qth text symbol is read. If
some P i occurs in the text, we invoke veri�cation. The analysis is also the
same as for Shift-Or, i.e. the average time becomes O(n logσ(m)/m). The
only di�erence is that no assumption is made on the pattern length.

We note that we can apply our technique to any number of patterns
simultaneously, as AC can search for any number of patterns. (Obviously,
the same is true for the bit-parallel algorithms as well, but in practice the
number of bits is too small.) The algorithm itself does not change much,
the partitioning technique is simply applied to all the r given patterns, and
searched for together. However, the veri�cation probability increases, i.e. it
is multiplied by r, and hence we must choose q = O(m/ logσ(rm)), resulting
in O(n logσ(rm)/m) average time, which is again optimal. Alg. 9 gives the
pseudocode for �ltering, and Alg. 10 for veri�cation.

Fig. 1.4 presents the full automaton for patterns {atataa, acatta}, using

30 CHAPTER 1. ONLINE EXACT STRING MATCHING

a t

c

a

a

t

t

a c

c

a

c

c

t

c

t

a

t

t

c

a
t

a

c

Figure 1.4: AC-automaton example

Alg. 9 Average-Optimal-AC(T, n, P, r,m, q).
1 for i ← 0 to r − 1 do
2 for j ← 0 to q − 1 do
3 for k ← 0 to bm/qc − 1 do
4 Piq+j [k] ← P i[kq + j]
5 AC ← Build-AC(P, rq)
6 s ← 0; i ← 0
7 while i < n do
8 s ← AC.δ[s][T [i]]
9 if AC.id[s] 6= ∅ then VerifyAOAC(T, i, n, P, m, q, AC, s)
10 i ← i + q

the parameter q = 3, giving the pattern (multi-)set {at, ta, aa, at, ct, aa}.
The solid arrows correspond to the trie of the set.

The number of states is still O(rm) in the worst case, as in the case
of standard AC automaton. However, if r is large as compared to σ, many
pattern pieces can share the same pre�x, which reduces the number of states
in practice. In our case we have qr pre�xes, and the pattern lengths are only
bm/qc, and hence in practice the automaton has fewer states than plain AC.

Finally, we note that the worst-case time can be improved from the
O(nmr) to just O(n), by using the same trick as for Shift-Or (see Sect. 1.4.3).
That is, it is simple to use standard AC algorithm for the veri�cations, and
by saving the search state the total worst-case time can be made O(n).

1.6. APP. OF THE AOSO TECHNIQUE IN OTHER ALGORITHMS 31

Alg. 10 VerifyAOAC(T, i, n, P, m, q, AC, s).
1 for i ← 0 to |AC.id[s]| − 1 do
2 id ← bAC.id[s][i]/qc
3 os ← AC.id[s][i] mod q
4 c ← −(bm/qc − 1) q − os

5 if P id[0 . . . m− 1] = T [i + c . . . i + c + m− 1] then report match

1.6 Application of the AOSO technique
in other algorithms

The proposed technique of parallel searching for sampled subpatterns can
be applied for several other algorithms as well [FG05b, FG09a]. We present
them below, with an exception of the average-optimal Shift-Add algorithm
which solves the k-mismatches problem, and its presentation was thus shifted
to Chapter 2, dedicated to approximate string matching.

1.6.1 Pattern matching with swaps
The problem of matching with local swaps (also called transpositions) is to
report all text substrings T [i . . . i+m−1] such that every text symbol T [i+j]
matches either P [j], or P [j − 1], or P [j + 1]. In other words, any pair of
adjacent symbols of P is allowed to be swapped, but no symbol can partic-
ipate in more than one swap. The best known complexity for this problem
is O(n log m log σ) [ACH+01], and recently also a bit-parallel algorithm was
shown [IR08b], with O(n log mdm/we) worst-case time complexity. The
best bit-parallel algorithms [Fre00] solve the problem in O(ndm/we) and
O(n logσ(m)/m) worst- and average-case (for m = O(w)) times, respec-
tively.

Our average-optimal Shift-Or algorithm can be adapted for this problem
as well. The only essential change is in the preprocessing; the mask B[c] has
hth bit set to 0, i� P [iq+ j] = c, or P [iq+ j−1] = c, or P [iq+ j +1] = c (cf.
Alg. 4, line 5). In this way, more veri�cations are needed compared to the
exact matching problem, but it is easy to notice that on average the match
probability for a pair of symbols, at any sampled position of T , is upper-
bounded by 3/σ, i.e., grows only by a constant, hence the O(n logσ(m)/m)
average time complexity for the simpler problem remains (for m = O(w)), as
each veri�cation takes O(m) time in the worst case, and only O(1) time on
average. (Note that we cannot use the probability estimation of 3/σ for the
case of σ < 4. The precise probability formula, p = 1 − (1 − 1/σ)3, should
then be used, which makes showing the average time complexity equally

32 CHAPTER 1. ONLINE EXACT STRING MATCHING

trivial.) For longer patterns, the trick described in Sect. 1.4.2 can be used
again, leading to O(n logσ/h(m)/m) average time.

1.6.2 Pattern matching with all circular shifts
In the problem of matching with all circular shifts, we are interested in re-
porting matches between a substring of the text and any rotation P [i . . .m]
P [0 . . . i−1] of the pattern [IR08a]. The best known solution needs O(n log σ)
time.

Again, we care for the average case rather than the worst case. To this
end, we can partition each of the m rotations into q evenly spaced subse-
quences, and search for all the mq strings with a multiple matching algo-
rithm, namely AC again. Any match (of length bm/qc) is veri�ed naïvely
in O(m) time per matching piece. The analysis is then the same as before,
but using r = mq, which gives q = O(m/ logσ(m)), and O(n logσ(m)/m)
average time.

The problem with that analysis is that now the patterns (i.e., rotations
of P) are not independent. Still, we can make use of the analysis of several
problems with transposition invariance [FMN06]. In transposition invari-
ance, P matches (exactly) the text substring T [j . . . j + m − 1], if there
exists a t ∈ {−σ, . . . , σ} such that P [i] + t = T [j + i] for every i. The
problem was solved by generating all the O(σ) possible transpositions and
resorting to multiple matching. Our case is similar: the generated patterns
are not random, but depend on the original pattern. However, the authors
of the cited work showed [FMN06, Sect. 5.3] that the average-case com-
plexity analysis that assumes uniform distribution of the pattern symbols is
still valid, even if the generated patterns are not independent. This anal-
ysis generalizes straightforwardly to our case. We can thus mimic all the
steps of their proof, with necessary modi�cations [FG09a], showing that our
O(n logσ(m)/m) average-case bound is valid. This is also the lower bound
for the problem, as otherwise we could solve the exact string matching prob-
lem faster, by using some faster algorithm for circular shifts as a �lter. Hence
our algorithm is optimal on average.

Finally, we note that the average-optimal Shift-Or algorithm could be
adapted as well, by generating a pattern P ′ = P [0 . . . m − 1]P [0 . . . m − 2].
The substrings of P ′ include all the substrings of all the circular rotations
of P , and hence we could use P ′ as a �lter (but still using text windows of
length m only; note that this trick does not work with all algorithms, but
AOSO poses no problems). As |P ′| = O(m), the complexity remains the
same as for the exact matching.

1.7. EXPERIMENTAL RESULTS 33

1.6.3 (δ, γ)-matching
In the problem of (δ, γ)-matching, the pairs of corresponding integer sym-
bols of P and T are allowed to di�er by at most δ and the total sum
of absolute values of those di�erences must not exceed γ; see Chapter 3,
where similar problems are discussed at length. For this application, we can
use our techniques to modify the algorithm from [CIN+05], which runs in
O(ndm(1 + log(γ + 1))/we) time in the worst case, to obtain a �ltering algo-
rithm working in O(ndm(1 + log(γ + 1))/we/q) on average. Assuming uni-
form random distribution of characters, we obtain O(n log2 γ logσ/δ(m)/w)
asymptotic average time by selecting q = O(m/ logσ/δ m).

1.7 Experimental results

The experiments with our algorithms focus on the average-optimal Shift-Or
algorithm, but we give also some results for the average-optimal Shift-Add
and Aho�Corasick algorithms. They are not meant to be exhaustive, still
they show the potential of our techniques. It can be seen from the results
that we can easily beat some of the best previous algorithms.

1.7.1 Shift-Or and Shift-Add experiments
Chronologically, the experiments were �rst run on a Pentium4 and a Ultra-
SPARC IIIi platform [FG05b], and much later repeated on a more powerful
machine, equipped with an Intel Core 2 Duo CPU [FG09a]. We start with
the older results (only for exact matching).

All algorithms were implemented in C. The compiler used for the P4 ma-
chine was icc 8.1. Namely, the experiments were carried out on a 2.4GHz
Pentium4 with 512MB RAM, 512KB cache, running GNU/Linux 2.4.20-8.
Some experiments were then performed with an 1.28GHz UltraSPARC IIIi
with 16GB RAM, 1MB cache, running SunOS 5.9. In this case, the used
compiler was Sun ONE Studio 8 C.

We performed the experiments using random ASCII (σ = 96, n =
10MB), and several real texts. These are: E.coli DNA sequence (4 638 690
characters) from Canterbury Corpus,4 real protein data (5 050 292 charac-
ters) from TIGR Database (TDB),5 and natural language text (the collected
works of Charles Dickens, 10 192 446 characters), from Silesia Corpus.6 The

4http://corpus.canterbury.ac.nz/descriptions/
5http://www.tigr.org/tdb
6http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia

34 CHAPTER 1. ONLINE EXACT STRING MATCHING

patterns were randomly extracted from the texts, and each test was repeated
100 times. We report the average speed in megabytes per second.

The algorithms included in the experiments were the following:
• BNDM � The baseline algorithm [NR00] (implemented by Kimmo

Fredriksson), one of the best known and most e�ective of the bit-
parallel algorithms,

• SBNDM � Simpli�ed version of BNDM [Nav01b, PT03] (implemented
by Kimmo Fredriksson); in practice faster, but examines more text
characters,

• AOSO � Our Average-Optimal Shift-Or algorithm,
• FAOSO � Fast variant of AOSO, using unroll factor of U = 4,
• Shift-Or � Plain classical Shift-Or algorithm [BYG92],
• Fast Shift-Or � Fast variant of Shift-Or, using unroll factor of U = 4.
Moreover, in the newer experiments on the Intel Core 2 Duo, the range

of tested algorithms was extended with:
• BNDM2 � The fastest algorithm of the BNDM family [HD05],
• AOSOA � Adaptive version of AOSO,
• AOSA � Our Average-Optimal Shift-Add algorithm for matching under

Hamming distance (cf. Sect. 2.3.1).
The variants of BNDM are considered to be the fastest general purpose

exact string matching algorithms for m ≤ w. We also compared against
the Boyer�Moore�Horspool algorithm [Hor80], and Boyer�Moore�Horspool�
Sunday algorithm [Sun90], but these were not competitive, so we do not
report the speeds here.

For AOSO and FAOSO the optimal q value was found experimentally
(however, especially FAOSO is not too sensitive to the exact value of q, for
long patterns slightly too small q values do not degrade the performance
much).

Table 1.1 gives the speeds in megabytes per second for all the texts.
AOSO denotes our Average-Optimal Shift-Or algorithm, and FAOSO the
fast variant of it, using the unrolling trick. Additional results (not in-
cluded in the table): Shift-Or processes 131MB/s, 128MB/s, 128MB/s
and 132MB/s, and the fast Shift-Or 776MB/s, 764MB/s, 817MB/s and
820MB/s for DNA, proteins, natural language and random ASCII, respec-
tively. Note that the speeds for the plain Shift-Or do not depend on the
pattern length. For the fast variants, we used unrolling factor U = 4, when
the representation �tted into a single computer word, otherwise we were
forced to use values 1 . . . 3.

As it can be seen, our algorithms are clearly the fastest on DNA in all the
cases. Interestingly, the fast variant of the plain Shift-Or algorithm beats

1.7. EXPERIMENTAL RESULTS 35

DNA
m, q AOSO FAOSO BNDM SBNDM
4, 2 321 503 181 210
8, 2 539 763 312 357

12, 3 702 941 438 492
16, 3 1029 1229 567 598
20, 4 1079 1341 750 804
24, 4 1229 1525 1106 1164
28, 5 1427 1638 1106 1164

proteins
m, q AOSO FAOSO BNDM SBNDM
4, 2 580 909 415 512
8, 4 944 1267 642 678

12, 4 1120 1376 816 926
16, 4 1120 1459 963 1025
20, 4 1235 1376 1175 1204
24, 5 1267 1338 1235 1302
28, 6 1302 1302 1302 1302

natural language
m, q AOSO FAOSO BNDM SBNDM
4, 2 579 884 368 476
8, 4 1034 1262 685 778

12, 4 1144 1279 797 845
16, 5 1200 1389 831 944
20, 6 1279 1389 1013 1092

random ASCII
m, q AOSO FAOSO BNDM SBNDM
4, 2 599 952 633 1053
8, 4 1124 1333 1064 1220

12, 4 1250 1389 1299 1282
16, 4 1351 1389 1351 1389
20, 6 1449 1471 1370 1429

Table 1.1: Exact matching. Searching speed in megabytes per second for di�erent
algorithms on Pentium4.

our average optimal Shift-Or for m ≤ 8. The results are quite similar for
proteins, but for long patterns BNDM variants have equal performance to
our algorithms. Note also that for all cases SBNDM is consistently slightly
faster than BNDM. Our approach is faster also in natural language text,
while on random ASCII the di�erences are considerably smaller.

The experiments were repeated on UltraSPARC IIIi for DNA and natural
language and can be seen in Table 1.2. Additional results: Shift-Or processes
91MB/s and 90MB/s, and the fast Shift-Or 168MB/s and 165MB/s on
DNA and natural language, respectively. FAOSO is again clearly the fastest
alternative, but contrary to the results on Pentium4 the plain AOSO is not
competitive.

Now we present newer experimental results. The test machine was
changed to an 3.0GHz Intel Core 2 Duo (E6850) with 2GB RAM, 4MB
cache, running GNU/Linux 2.6.22.4 and icc 10.0 compiler. The datasets

m, q AOSO FAOSO BNDM SBNDM
4, 2 70 109 103 92
8, 2 104 193 146 141

12, 3 132 227 171 164
16, 3 135 234 194 192
20, 4 161 256 207 207

m, q AOSO FAOSO BNDM SBNDM
4, 2 104 198 142 147
8, 4 157 250 193 192

12, 4 160 256 217 220
16, 4 175 267 232 233
20, 6 189 275 244 247

Table 1.2: Exact matching. Searching speed in megabytes per second for di�erent
algorithms on UltraSPARC IIIi. Left: DNA; right: natural language.

36 CHAPTER 1. ONLINE EXACT STRING MATCHING

and the test methodology did not change.
Again, the Boyer�Moore�Horspool algorithm (including optimized vari-

ants, using fast skip-loops) and Boyer�Moore�Horspool�Sunday algorithm
were not competitive, so we do not report the results.

Besides BNDM2, the authors of [HD05] presented several other BNDM
variants, but BNDM2 was clearly the best in our experiments.

The algorithm AOSOA uses an adaptive method for selecting q (see
Sect. 1.4.1), implemented as follows: the initial value is q = m; every time a
veri�cation is invoked, q is decremented by one; after every 256th text access
by the �lter, q is incremented by one. This simple strategy works well in
practice. AOSOA also uses a simple unrolling method (inner loop is simply
repeated 4 times), but not the more advanced and e�cient method used by
FAOSO.

Table 1.3 gives the speeds in megabytes per second for all the texts. The
q values reported correspond both to AOSO and FAOSO. As it can be seen,
our algorithms are clearly the fastest on DNA in all the cases. Interestingly,
the fast variant of the plain Shift-Or algorithm beats our average optimal
Shift-Or for short patterns. FAOSO is the best alternative also for natural
language, but in some cases the gap against BNDM2 is small. The results
for proteins and random ASCII are worse for the proposed algorithm; in
some cases BNDM2 wins by a wide margin.

In general, the best algorithms are FAOSO and BNDM2, with only a few
exceptions. The main problem with FAOSO (and AOSO) is that q must be
an integer, and this forces too small values in some cases. The problem
with BNDM2 is that, assuming that an e�cient implementation unrolls U
times, it can shift only after reading U characters, and the maximum shift
is reduced to m− U + 1. Our algorithms do not have such limitations.

Finally, Table 1.4 gives the speeds for the average-optimal Shift-Add
(AOSA) for Core 2 Duo. Our character skipping technique clearly speeds-
up Shift-Add as well, the exception being short patterns or large k on DNA
alphabet, where our algorithm essentially degenerates to plain Shift-Add.

1.7.2 Aho�Corasick experiments
We implemented also an AC-automaton, and its average-optimal version
(AOAC). The implementation comprises a full automaton without the fail
transitions. For a comparison, we used the Backward Set Oracle Matching
(BSOM) algorithm [AR99, NR02] (implemented by its authors). This is a
simpli�ed version of multiple BDM algorithm, but it has been experimentally
shown that BSOM is always faster than BDM [NR02], and one of the fastest

1.7. EXPERIMENTAL RESULTS 37

DNA
Shift-Or: 478, Fast Shift-Or: 1164

m, q AOSO FAOSO AOSOA BNDM SBNDM BNDM2
4, 2 329 395 508 334 400 567
8, 2 802 1474 851 592 707 819

12, 4 983 2011 1301 825 1001 1079
16, 4 1474 2458 1638 1022 1286 1382
20, 4 1695 3276 2011 1222 1563 1638
24, 4 1762 3597 2107 1427 1843 1923
28, 4 1777 3717 2458 1602 2116 2212

proteins
Shift-Or: 473, Fast Shift-Or: 1151

m, q AOSO FAOSO AOSOA BNDM SBNDM BNDM2
4, 2 882 1605 892 753 917 1473
8, 4 1553 2603 1417 1120 1294 2992

12, 4 1720 3676 2189 1416 1738 4081
16, 8 2676 3853 2676 1852 2271 4816
20, 8 2676 3853 3010 2189 2816 5235
24, 8 3211 5873 3705 2675 3368 5473
28, 8 3440 5873 4014 3211 3947 5734

natural language
Shift-Or: 476, Fast Shift-Or: 1151

m, q AOSO FAOSO AOSOA BNDM SBNDM BNDM2
4, 2 798 1450 817 710 816 1350
8, 4 1495 2492 1369 1020 1171 2430

12, 4 1735 3600 2160 1275 1555 3240
16, 4 1767 3641 2627 1502 1948 3600
20, 6 2558 4628 2859 1714 2337 3888
24, 8 3240 5143 3600 1921 2730 4050
28, 8 3240 5282 4050 2118 3076 4226

random ASCII
Shift-Or: 477, Fast Shift-Or: 1152

m, q AOSO FAOSO AOSOA BNDM SBNDM BNDM2
4, 2 901 2000 1149 1316 2150 1339
8, 4 1786 3636 2041 2222 3125 2967

12, 6 2564 4878 2941 2941 3636 4367
16, 8 3330 5556 3571 3300 4000 5495
20, 10 4000 5714 4348 3703 4348 5814
24, 12 4546 5882 4546 4167 4444 6024
28, 12 4546 5882 4762 4348 4651 6289

Table 1.3: Searching speed in megabytes per second for di�erent algorithms on
Core 2 Duo

38 CHAPTER 1. ONLINE EXACT STRING MATCHING

Alg AOSA AOSA AOSA AOSA AOSA Shift-Add
m m = 8 m = 12 m = 16 m = 8 m = 16 m = 8 . . . 16
k k = 1 k = 1 k = 1 k = 2 k = 2 k = 1 . . . 2

DNA 379 702 834 379 681 379
Proteins 816 944 1554 438 860 379

NL (ASCII) 784 875 1519 397 860 379
Rnd (ASCII) 855 1613 1724 826 1587 379

Table 1.4: k-mismatches. Searching speed in megabytes per second for Average-
Optimal Shift-Add on Core 2 Duo.

algorithms for moderate to long patterns, the competitiveness increasing also
for increasing alphabet sizes.

The experiments were run using pattern set sizes r ∈ {1, 16, 64} and
pattern lengths m ∈ {8, 16, 64}. The results are shown in Table 1.5 for
Core 2 Duo. Our algorithm is always faster than BSOM, but loses to plain
AC for short DNA patterns for r = 16, 64. The reason is that in these
cases the optimal q is 1, i.e. AOAC degenerates to plain AC, with additional
complexity. However, for larger alphabets and longer patterns our approach
is better by far.

1.8 Conclusions

The exact string matching is a fundamental problem with over 30 years of
research history. Pondering over this problem, we have managed to �nd
a novel, yet extremely simple, �ltering technique which has a surprising
number of applications in string matching algorithms. The resulting new
algorithms often have optimal running times on average, and have simple
implementations, which helps them achieve very competitive speeds in prac-
tice, what was demonstrated in comparative experiments on three di�erent
hardware platforms (Pentium4, UltraSPARC IIIi and Core 2 Duo). The
simplicity comes from a novel forward matching technique (as opposed to
backward matching as in most competing algorithms) and from the fact that
the pattern shifts are constant. This also leads to simple unrolling trick that
boosts the search in modern hardware. This trick cannot be applied so suc-
cessfully to more complex backward matching algorithms.

With regard to exact string matching, we showed how our technique
can be used to modify the well-known bit-parallel algorithm, Shift-Or, to
achieve the optimal running time on average, for short patterns. We call
our algorithm FAOSO. Interestingly, the same idea can be used for other
exact string matching algorithms, as we showed in [FG09a] on the example of

1.8. CONCLUSIONS 39

DNA
m, r, q AOAC AC BSOM
8, 1, 2 691 421 394

16, 1, 4 1341 421 504
64, 1, 16 3403 421 1593
8, 16, 1 385 417 127

16, 16, 2 737 413 234
64, 16, 9 1580 395 725
8, 64, 1 323 369 61

16, 64, 2 481 357 153
64, 64, 9 714 297 433

proteins
m, r, q AOAC AC BSOM
8, 1, 4 1338 422 708

16, 1, 8 2535 419 1170
64, 1, 16 5351 419 3265
8, 16, 2 764 415 303

16, 16, 5 1505 412 554
64, 16, 16 2349 385 1517
8, 64, 2 645 395 216

16, 64, 4 958 376 396
64, 64, 16 1021 295 775

natural language
m, r, q AOAC AC BSOM
8, 1, 4 1312 419 729

16, 1, 8 2090 419 1098
64, 1, 20 5064 419 2682
8, 16, 2 741 415 250

16, 16, 4 1361 414 457
64, 16, 16 2576 400 1234
8, 64, 2 525 375 141

16, 64, 4 894 360 279
64, 64, 16 1225 315 680

random ASCII
m, r, q AOAC AC BSOM
8, 1, 4 1520 420 1210

16, 1, 8 2860 420 1980
64, 1, 32 5710 418 3830
8, 16, 4 1390 417 510

16, 16, 8 2250 415 1030
64, 16, 32 3300 398 2340
8, 64, 4 940 405 376

16, 64, 8 1300 394 680
64, 64, 20 1590 345 1120

Table 1.5: Multiple pattern search. Searching speed in megabytes per second for
di�erent algorithms on Intel Core 2 Duo.

modifying the brute-force algorithm. The resulting method was very simple,
with sublinear average search time, yet not competitive to FAOSO in prac-
tice (due to this reason, we omit the presentation of this algorithm in this
thesis). Our best result for exact matching, in asymptotic terms, is based
on building the Aho�Corasick automaton for a number of subsequences of
the given pattern. The algorithm achieves the optimal O(m+n logσ(m)/m)
average time, without any limitation on the pattern length. Generalizing
this algorithm for multiple patterns is straightforward and again optimal
average search time is achieved for this problem. We note now that another
application along these lines can be modifying the Karp�Rabin algorithm to
improve its average time from O(n) to the optimal O(n logσ(m)/m). The
key idea of the original algorithm is to calculate a signature (hash) from all
pattern symbols, and compare it to a respective signature for a text sub-
string. Matches have to be veri�ed (usually in a brute-force manner), but
mismatches with equal signatures are very rare. An important property
of the algorithm is that the hash function can be calculated incrementally,
paying O(1) time per a text character. Our technique of skipping charac-

40 CHAPTER 1. ONLINE EXACT STRING MATCHING

ters in regular intervals can also be applied to the KR algorithm. The only
problem is that matching a signature built over m/q text symbols against
all q signatures for subsequences of the pattern cannot be done, in brute-
force manner, as it would not lead to any improvement in the average time
complexity. Instead, we can use a hash table with signatures as keys, and
restrict the signatures to, e.g., min(m, log2(n)/2) bits, instead of the stan-
dard whole machine word (which has at least log2 n bits). In this way, the
hash table gets quite cheap both in space and initialization time, and the
average lookup time remains O(1).

The introduced technique also handles several approximate matching
problems. One is matching under Hamming distance, where we present two
algorithms [FG09a], the �rst based on the Shift-Add algorithm (it will be dis-
cussed in Sect. 2.3.1), the other on brute-force; the former of them achieves
the optimal average-case complexity for short patterns. Other models are
pattern matching with swaps, and pattern matching with all circular shifts,
where again our idea easily allows to achieve optimal average-case complex-
ity, for short patterns in case of the former problem, and for any patterns
in case of the latter one. Finally, the (δ, γ)-matching problem, motivated
by music information retrieval, was discussed. The obtained average-case
time is again optimal for short patterns. Our technique could be used with
the classic pattern partitioning technique [Nav01a] as well, to solve string
matching under Levenshtein distance (allowing k insertions, deletions or
substitutions) in O(nk logσ(m)/m) average time, optimal if logσ m = O(1).

Some of the proposed algorithms have been shown in thorough experi-
ments, with various real-world and arti�cial texts, to be very competitive in
practice.

Chapter 2

Online approximate string matching

The problem of approximate string matching is to �nd the occurrences of
pattern P in text T when some distortions of the pattern are allowed. More
precisely, a distance function (dissimilarity measure) between two sequences
must be speci�ed, and all the start (or end) text positions aligned with the
pattern where the distance between those two sequences does not exceed the
given error level, are reported. The choice of the distance function depends
on the application and constitutes the actual problem. The range of con-
sidered measures for approximate string matching is very wide. It contains
several edit distance variants, Hamming distance, reversals, block distance,
q-gram distance, (δ, γ, α)-distance and its particular cases, and many more.
The main application areas comprise computational biology, text retrieval
and signal processing, but the number of applications is greater, to name
anti-virus software, data mining, OCR algorithms or query-by-humming sys-
tems retrieving information from music databases.

Approximate string matching, as de�ned in the previous paragraph,
shifts a pattern along a (presumably, much longer) text sequence. A re-
lated problem is to calculate a global similarity of two sequences, usually
of comparable length. Here, the most widely used measure is the length of
the longest common subsequence (LCS), with applications in DNA sequence
analysis and program versioning, to name a few.

The outline of this chapter is as follows. In Sect. 2.1 we present several
widely used similarity measures and their main applications. Section 2.2
contains information on the basic tools and techniques used for approximate
string matching: dynamic programming, automata, FFT, bit-parallelism
and �ltering. Section 2.3 describes our novel technique [GF08] of splitting
counters in Shift-Add, a well-known bit-parallel algorithm for Hamming dis-

41

42 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

tance, to achieve the optimal parallelization. Applications of this idea in sev-
eral other string matching problems are also presented. In Sect. 2.4 we show
how our �ltering technique [FG09a] from Chapter 1 can be applied for the k-
mismatches problem (which is to report text positions in which the pattern
matches with at most k Hamming errors), to achieve an average-optimal
algorithm for short patterns. The next section discusses global similarity
measures, focusing on the LCS measure and its variants. In particular, we
point out our � theoretical and practical � results [NGMD05, GD08, DG09a]
for the longest common subsequence with transposition invariance (LCTS)
measure, an LCS variant devised for music information retrieval applica-
tions.

2.1 Similarity measures and their applications

Historically, the earliest application of approximate string matching was
probably the problem of correcting misspelled words [Nav01a]. The �rst ref-
erences go back to the 1920s and 1930s [Mas27], and even earlier, in 1918, the
famous phonetic algorithm Soundex [Knu73] was developed and patented.
The essence and novelty of Soundex was to index names by sound rather than
their spelling, and the matching of di�erent names with alike pronunciation
in this scheme can be considered a form of (application oriented) approxi-
mate matching. In the computer era the problem of approximate matching
started to be treated in an algorithmic way in the 1960s. It was noted, for
example, that about 80% of spelling errors could be corrected with a single
character insertion, deletion, replacement or transposition [Dam64], a claim
substantiated also in a more recent experimental work [Kuk92]. The need
for correcting garbled words is ubiquitous. So-called typos can be entered
manually, due to a writer's carelessness, or lexical incompetence, or orthog-
raphy ignorance, or they can appear in the OCR process. Obviously, error-
correcting capabilities are desirable in text editors, educational (language
learning) software, command language interfaces, or programming environ-
ments, to name a few applications. Apart from error correction (which often
poses language-speci�c problems and consequently implies language-speci�c
solutions [DC05]), it is desirable to have error-tolerant search procedures
implemented. One of the most important targets for approximate matching
in the recent years are web searchers. Navarro in [Nav01a] reports that the
search for the word �Levenshtein� with Altavista search engine gave more
than 30% errors, allowing just a single deletion or transposition.

A related, but much more exhaustive, experiment was performed in 2001

2.1. SIMILARITY MEASURES AND THEIR APPLICATIONS 43

by Dalianis [Dal02]. An examination of approximately one million queries
to the web site of Swedish National Tax Board, mostly in Swedish language,
revealed that almost 10% of them were misspelled or erroneous. Those
examples, we believe, give some motivation for researching the area of ap-
proximate string matching. It could be also noted that the current leader
in web searchers, the Google engine, suggests the correct spelling (e.g., asks
�Did you mean: Levenshtein�, if the entered term was �Levenschtein�), i.e.,
makes use of approximate matching algorithms over its term vocabulary.

To decide if a given sequence matches another, in an approximate sense,
in most matching models a similarity measure, or distance, between the
sequences, is speci�ed. The distance d(A,B) between strings A and B is
the minimal cost of a sequence of operations that convert sequence A into
B. Each of the allowed operations has a de�ned positive cost (weight). If all
the operation weights are unary, the minimal-cost path to tranform A into
B corresponds to the minimal number of operations to tranform A into B.
The minimal-cost path does not have to be unique. If the transformation of
A into B is impossible, the distance is ∞. The distance function is often,
but not always, symmetric (i.e. d(A,B) = d(B,A)).

In most applications, the set of allowed operations contains:
• insertion,
• deletion,
• substitution (replacement),
• transposition.
Now we can present several most widely used distance functions.

Levenshtein or edit distance. It allows insertions, deletions and
substitutions, usually with unary costs, and is often denoted with ed(·, ·).
Note that a single transposition error (e.g., the � teh) is counted as two
errors in the Levenshtein distance, as this can be corrected e.g. with a single
deletion and a single insertion. Note also for this example that the correction
path is not unique since two substitutions are just as good. In the literature
the search problem under the Levenshtein distance is also called �string
matching with k di�erences�, where k is the number of allowed errors (the
maximum distance allowed). This distance is symmetric and ed(A,B) ≤
max{|A|, |B|}. The volume of works dedicated to this matching model is
large and was surveyed by Navarro in [Nav01a].

Indel distance. It allows only insertions and deletions. This distance
is also symmetric and dID(A,B) ≤ |A|+ |B|. Most algorithms developed for
Levenshtein distance can be easily adopted to indel distance.

44 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

Hamming distance. It allows only substitutions. Note dH(A,B) =
∞⇐⇒ |A| 6= |B|. The matching problem is also called �string matching with
k mismatches�, but we should distinguish between reporting the Hamming
distance for each position of the text (which clearly needs Ω(n) time even
in the best case in the character model, i.e., if only single characters are
read at a time), and reporting the text positions for which the pattern is
aligned with at most k errors, which can be done much faster on average.
Because the matching pattern and the corresponding text area must be of
equal length, those two problems are amenable for FFT-based approaches
(see Sect. 2.2.3).

Damerau distance. This model comprises all the Levenshtein errors,
i.e., insertions, deletions and substitutions, but also consider a transposition
of two adjacent symbols as a single error.

γ (or L1) distance. This model requires an ordered (typically, inte-
ger) alphabet, and the distance between the pattern and its corresponding
text excerpt, of equal length, is the sum of absolute di�erences over all the
corresponding pairs of symbols, and should not exceed a given γ. Such
a measure is motivated by music information retrieval, where retrieving a
melody based on a �pattern� sung or whisted by an untrained human should
be tolerant to false notes, as long as the total amount of imprecisions does
not exceed a reasonable limit. Another variant of this measure is called
(δ, γ), where apart from the total error γ, a limitation δ on individual sym-
bols (music notes) is also imposed.

2.2 Basic techniques

Although the Cartesian product of various approximate matching problems
and their possible scenarios (short/long patterns, repetitive/non-repetitive
patterns, small/large alphabet, low/medium/high allowed error level, etc.)
is huge and makes room for plenty of algorithms (many of which are com-
petitive, in theory or in practice, at least in some niches), almost all the
known solutions and techniques can be classi�ed into only �ve areas. Those
fundamental approaches to solve di�erent approximate matching problems
are:

• dynamic programming,
• automata,
• FFT,

2.2. BASIC TECHNIQUES 45

• bit-parallelism,
• �ltering.
They are not totally distinct or independent; for example, many algo-

rithms based on bit-parallelism are speci�c simulations of non-deterministic
�nite automata. In the following subsections we take a closer look at each
of those four approaches.

2.2.1 Dynamic programming algorithms
This is the oldest area, very important but no longer very active. Still, some
of our results (to be presented in Sect. 5.3) are based on dynamic program-
ming. Let us present a simple dynamic programming (DP) algorithm for
calculating the Levenshtein distance between two sequences A and B, of
length n and m, respectively. The idea is to �ll � one by one � the cells of a
two-dimensional (n + 1)× (m + 1) matrix C, in a way that each cell (i, j),
i, j ≥ 0, gets the value of the Levenshtein distance between the sequence
pre�xes A[1 . . . i] and B[1 . . . j].

Note that empty pre�xes correspond to the cells at two adjacent borders
of the matrix, let us say, the topmost row and the leftmost column. No
matter what A and B are, Ci,0 = i, for any i, and similarly C0,j = j, for
any j. This is because converting an empty string into a(ny) string of length
j requires j operations (insertions only) and converting a(ny) string of length
i into an empty string requires i operations (deletions only). This simple
observation allows us to �ll �blindly� the topmost row and the leftmost
column of C with the increasing numbers. For the Levenshtein distance
(and many other distances) the value in each cell (except in the leftmost
column / topmost row) depends only on its three neighbors: upper, left and
upper-left. Precisely, the formula for Ci,j is:

Ci,j = if (Ai = Bj) then Ci−1,j−1

else 1 + min(Ci−1,j , Ci,j−1, Ci−1,j−1),

and the bottom-right corner cell stores the �nal answer. Fig. 2.1 illustrates.
To understand the formula, it is convenient to consider scanning in par-

allel both sequences, A and B, from left to right, possibly making �false
moves� from time to time: either move one character forward in A but not
in B, or move one character forward in B but not in A, or move one char-
acter forward in both sequences but the newly read characters are di�erent.
All those cases add up a single error, and only passing over matching charac-
ters in both sequences does not increase the overall error. The Levenshtein
distance is the minimum error over all such possible traversals.

46 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

Figure 2.1: Dynamic programming for Levenshtein distance calculation,
ed(A,B) = 3

We go back to the DP formula. If the two pre�xes, A[1 . . . i] and B[1 . . . j],
end with same character, those last characters could be truncated without
a�ecting the distance between pre�xes, hence the �rst part of the formula
is implied. If those last characters are not equal, we must consider three
possibilities for the �last step� in a run of operations converting one of the
pre�xes into the other. One is that A[i] has just been inserted, i.e., the pre-
vious state corresponds to the cell Ci−1,j . The other possibility is that B[j]
has just been inserted, and the previous state corresponds to the cell Ci,j−1.
Finally, it is possible that A[i] was replaced with B[j], which directs us to
the cell Ci−1,j−1. The fundamental assumption of dynamic programming is
that the previous states are already known, and in this case it means, in
particular, that we know the distances between A[1 . . . i− 1] and B[1 . . . j],
A[1 . . . i] and B[1 . . . j − 1], and A[1 . . . i − 1] and B[1 . . . j − 1]. To �nd
ed(A[1 . . . i], B[1 . . . j]), we must add the error cost (i.e., 1) of the last opera-
tion to the minimum of the mentioned distances, which gives us the formula
above.

The described routine only �nds the distance (path length), not the mis-
matching characters. To actually �nd the sequence of operations converting
A into B, we need to traverse back the matrix, jumping up-left to the previ-
ous row at the update position. One should remember that the path doesn't
have to be unique. The algorithm complexity is O(nm) in time, even for
the mere distance calculation. As for �nding the sequence of operations, it
is also O(nm) in space, as we need to store the entire matrix �or at least
an area around the main diagonal� [Nav01a]. The latter observation lets
us think that in output-dependent terms the space can be smaller, namely
O(np), where p = ed(A,B).

Interestingly, in 1975 Hirschberg [Hir75] presented a brilliant idea based
on the divide-and-conquer paradigm, which decreases the space usage to

2.2. BASIC TECHNIQUES 47

O(n), while retaining the O(nm) time. Note that for the mere distance
calculation achieving the linear space complexity is trivial, since it is enough
to always store only the current and the previous row. Alternatively, we can
traverse the matrix column-wise, and then the space usage turns into O(m).

Demonstrating dynamic programming on an example of edit distance
is popular (due to the importance and simplicity of that distance), but it
should be stressed that in general a given cell Ci,j value may not depend
only on A[i], B[j] and the three neighboring cells. The only requirement,
assuming row-wise traversal of the DP matrix, is that we should be able to
calculate d(A[1 . . . i], B[1 . . . j]) and write it into Ci,j , knowing all the other
distances between pre�xes of A[1 . . . i−1] and B, plus the distances between
A[1 . . . i] and pre�xes of B[1 . . . j − 1] (symmetrically, we can specify when
column-wise DP calculations are possible). In fact, many more cells than
three are typically needed to calculate a cell value in matching with gaps
[CCF05a, FG06c]. This undemanding requirement makes the DP approach
�exible and working naturally with many similarity measures.

The main problem with DP algorithms is the high computation time.
Note that the quadratic complexity is not only for the worst case, but occurs
for any pair of patterns. Hence, the research on speeding-up DP algorithms
was twofold: focusing on improving the worst case, and focusing on the
average case. We assume the Levenshtein distance below, although many of
the sketched techniques are of wider use.

As for the worst case, yet in 1980 Masek and Paterson [MP80] gave an
algorithm with O(nm/ log2

σ n) time complexity. Note that the complexity
strongly depends on the alphabet size σ (works best for the binary alpha-
bet). For large enough σ, the algorithm turns into the plain DP procedure.
The Masek and Paterson algorithm is based on the so-called Four-Russians
technique [ADKF75]. They split the matrix into r × r boxes, where r is
small enough (with use of O(n) extra memory, r does not exceed log3σ n),
and precompute them one by one (in some order, e.g. row-wise and from left
to right in rows), where a given box's input are: the corresponding chunks
from both sequences, the gathered distance value from the bottom-right cell
of the upper-left box (which is already known), and the last column and
last row, i.e., the left and the top �walls� of the current box. An important
idea is to compactly represent those left and top �walls�. This is possible
since, from basic properties of the DP matrix in the Levenshtein distance
calculation, adjacent cells can di�er only by −1, 0 or +1.

Overall, there are m(3σ)2r di�erent cells to precompute, which, for the
r speci�ed earlier, leads to the given subquadratic �nal complexity.

Ukkonen is the inventor of the approach later called �diagonal transition

48 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

algorithms� [Ukk85a]. He noticed that the upper-left to lower-right diagonals
are monotonically increasing (with subsequent di�erences 0 or 1 only), and it
is enough to quickly �nd all the cells in which the values are incremented. A
practical implementation �nding each such cell in O(1) time is not so simple
though, and requires a �heavy� indexing structure, the su�x tree. Still, for
two strings A and B, the edit distance between them can be calculated in
O(ed(A,B)2) time. In the search problem variant it is crucial to know if the
distance for the current alignment is ≤ k (i.e., match). Ukkonen's algorithm
checks this condition in O(k2) time. The following algorithms along these
lines were from Landau and Vishkin; in their last work in the series [LV89]
they achieved O(kn) worst-case time and O(n) space for the search problem.
Note that trivially adapting the Ukkonen's algorithm for this setting would
result in O(nk2) time, which was hardly ever attractive. Other algorithms
of this kind are e.g. [Mye86, CL94, CH98]. The last of the mentioned results
has the worst-case time complexity of O(n(1 + k4/m)) (for some patterns it
is faster), i.e., can be linear for non-constant (but small enough) k.

The average-case oriented algorithms are much more important in prac-
tice. Ukkonen [Ukk85b] improved the average time complexity to O(kn)
(interestingly, Ukkonen gave only a short note describing this idea and con-
jecturing the average time complexity; the real proof was given later, in a
work by Chang and Lampe [CL92]), while the space remained O(m). Obvi-
ously, the DP matrix is traversed column-wise. The algorithm is based on
a simple but powerful trick, so-called cut-o� heuristic. Values in columns,
if we go down, do not ever decrease. The cells with values larger than k
are irrelevant, in the sense we do not need to know their exact values. We
simply know they are inactive. Hence, it is needed to keep track of the last
active cell in each column. Let it be in row i for some particular column.
The next column can thus be calculated down only to row i + 1 (all the
cells below must be inactive). The cut-o� trick was adapted by Cantone et
al. [CCF05b], and Fredriksson and Grabowski [FG05a, FG06a, FG08a] for
(δ, α)-matching and related problems. More details will be given in Chap. 3.

An algorithm from [Mye86] is based on the diagonal transitions, and is
a trivial (but quite practical) simpli�cation of the sophisticated algorithms
in [Ukk85a] and following ones. This variant is based on brute-force but its
O(kn) average time complexity follows immediately. An original approach
was taken in [CL92]. The algorithm works column-wise, and partitions each
column into runs of strictly increasing cells. As the average length of the
runs is O(

√
σ) (which was proved only in [Nav01a, pp. 13, 25]), and the

algorithm incorporates also the cut-o� heuristic, its average search time gets
O(kn/

√
δ), making this algorithm the fastest in its class.

2.2. BASIC TECHNIQUES 49

2.2.2 Algorithms based on automata
With this approach it is possible to reach the worst-case lower bound for
the Levenshtein distance, which is O(n), but at a cost of space growing ex-
ponentially in m and k, hence it is not very practical. Again, this approach
was initiated by Ukkonen. In [Ukk85b], he constructed a deterministic �nite
state automaton (DFA), whose states corresponded to the full possible set
of values for the columns in the DP matrix. Once the automaton is built,
the text is scanned with it, with clearly O(1) time per input character. Still,
of course, the space use was immense. Some optimizations and non-trivial
analyses in the same work made possible to bound the number of the au-
tomaton states with O(min{3m,m(2mσ)k}), which was, many years later,
further re�ned by Melichar [Mel96]. Nevertheless, in spite of those improve-
ments, the DFA-based algorithm is completely intractable apart from short
patterns or very small error levels.

2.2.3 Fast Fourier transform based algorithms
The idea of using Fast Fourier transform (FFT) for approximate text match-
ing is actually quite old [FP74], but recently a couple of new algorithms using
this approach have been presented, especially for music information retrieval
motivated problems. In particular, it is possible to solve the δ-matching and
(δ, γ)-matching problems in O(δn log m) time, and the γ-matching problem
in O(n

√
m log m) time [CCI05]. Another FFT-based technique can reach

a better complexity for δ-matching, namely O(
√

δn log m), and O(nγ log γ)
for matching with γ total error limit [ALPU05].

For Hamming distance / k-mismatches, convolutions and FFT can be
used to get O(nσ log m) [FP74], and with a more re�ned technique, just
O(n

√
k log k) time [ALP00].

To give a �avor of this technique, here we present brie�y the classic
algorithm of Fischer and Paterson [FP74] for matching under Hamming dis-
tance. For each symbol c from the alphabet we create a bit-vector B[c] of
length m, with bits 1 at positions where c occurs in P , and 0s elsewhere.
Having this representation, we calculate convolutions between P and a slid-
ing window of T of width m. Using FFT, this can be done in O(n log m)
worst-case time. The result at each text position is a multiplication of two
binary vectors, i.e., the number of matching pairs of bits 1. To make the
implementation easier, we can run this in parallel for all σ symbols, and
wherever the sum of matches over the alphabet (hence the σ multiplicative
factor) is at least m− k, there we have a match.

50 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

FFT-based algorithms often belong to the asymptotically best solutions
known today, that is, are very competitive in the worst case for long patterns,
but in practice they may lose even to most naïve (brute-force) techniques,
due to large constants involved [FMN06].

Very recently, Fredriksson and Grabowski [FG09b] presented a word-level
parallelization technique for FFT-based approximate string matching, illus-
trating it with algorithms for Hamming distance and k-mismatches (similar
improvement for several other problems is possible). In particular, they re-
duced the complexity of the Amir et al. algorithm [ALP00] for k-mismatches
to O(n + n

√
k/w log k); other results can be found in the cited work.

2.2.4 Algorithms based on bit-parallelism
The bit-parallel approach, presented already in Chapter 1, proved its use-
fulness also in many approximate matching problems. One of the �rst al-
gorithms of this kind was Shift-Add [BYG92], which can be considered an
ingenious generalization of the Shift-Or algorithm that works for the exact
matching. Shift-Add is designed for the Hamming distance and solves the
matching problem in O(ndm log(k)/we) worst-case time. We postpone de-
scribing Shift-Add in detail until Sect. 2.3.1, where our modi�cations [GF08]
of this algorithm, with better time complexity, will also be presented.

The in�uential paper by Wu and Manber [WM92b], among many other
practical ideas, contained the �rst bit-parallelization of the NFA automaton
of Fig. 2.2. In this example (the picture idea was taken from [Nav01a]), the
automaton recognizes the pattern �ROSES� with at most two Levenshtein
errors. The grey circles correspond to the states active after reading the
text �AROUSED�. We assume the Levenshtein distance again, but it can
be adapted to some other distance measures in a straightforward way. The
Wu�Manber idea was to maintain k +1 rows of the automaton on the refer-
enced �gure, in one machine word each, if the pattern is short enough. Each
machine word Ri, i = 0 . . . k, keeps the states (active/inactive information
encoded in one bit) for each pattern pre�x, assuming exactly i errors in each
pre�x. The bit-parallel simulations of the automaton transactions are simi-
lar to the ones in Shift-Or (in particular, the mechanism for handling R0 is
exactly Shift-Or), but the formula is longer since the new value for Ri, i > 0,
must be a superposition (�or� operation) of four components, corresponding
to a matching character, an insertion error, a deletion error, and a substitu-
tion error. On the overall, the algorithm complexity is O(kdm/wen) in the
worst, but also in the best case. The algorithm is not very fast, according
to current standards, but its simple and �decomposable� structure allows for

2.2. BASIC TECHNIQUES 51

Figure 2.2: An NFA for recognizing the pattern �ROSES� with at most two Lev-
enshtein errors

great �exibility, e.g., to handle classes of characters and regular expressions
quite easily. This algorithm is the main building brick of the well-known
software package agrep from the same authors [WM92a].

Another technique to parallelize the NFA was presented by Baeza-Yates
and Navarro in 1996 [BYN96, BYN99], where the time complexity was im-
proved to O(dkm/wen), thanks to using parallelization over the diagonals,
not rows, of the automaton. The result seems a mediocre improvement over
its predecessor but note that for an important practical case of both small m
and small k (e.g., m = 10, k = 2), this algorithm works in linear time while
the Wu�Manber algorithm had to update three machine words for k = 2.
Nevertheless, a more radical improvement was achieved by Myers in 1998
[Mye98], in an algorithm parallelizing the computation of the DP matrix.
This algorithm, with O(dm/wen) time complexity, still belongs to the fastest
ones in practice. Unfortunately, Myers' algorithm is quite complicated, even
in the simpli�ed variant by Hyyrö [Hyy01].

2.2.5 The �ltering approach
The concept of �ltering is extremely simple and natural: use a fast algorithm
to discard possibly many text areas which cannot match, and use another
algorithm to verify potential matches. The veri�er may even use brute-force.

Filters care only for the average case. In their range of applicability,
however, they belong to the best choices: for example, for Levenshtein and
Hamming distance the average-optimal algorithms [CM94, FN04] belong
to �lters, and their average time complexity is O((k + logσ(m))n/m) (with

52 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

some limitation on the error level k/m). Also in practice �ltering algorithms
belong to the fastest, if only the error level is not too high.

The collection of known �ltering algorithms for approximate matching is
very large and we resign from presenting them; the curious reader is referred
to Navarro's survey [Nav01a] and also to a newer work [FN04].

2.3 A new technique for bit-parallel algorithms
with counters

In this section we present our technique for an �economical� use of bits
in bit-parallel algorithms working with counters. Our considerations will
be carried on the example of the well-known Shift-Add algorithm [BYG92]
for matching under Hamming distance, and later on we will show how the
presented idea can be applied also to some other problems and corresponding
algorithms. Most of the content of this section has been presented in [GF08].

As we know from Section 2.2, there are several algorithms with o(nm)
worst-case search time for Hamming distance. The most practical algorithm
from this group seems to be Shift-Add, based on bit-parallelism.

We propose two new variants of the Shift-Add algorithm, improving
its O(ndm log(k)/we) worst-case time �rst to O(ndm log log(k)/we), and
then to O(ndm/we). Note that the better result matches the time of the
best known algorithm for searching under edit distance [Mye99], obtaining
optimal parallelization.

2.3.1 Shift-Add algorithm
Shift-Add reserves a counter of ` = dlog2(k + 1)e + 1 bits for each pattern
character in a bit-vector D of length m` bits. This bit-vector denotes the
search state: the ith counter tells the number of mismatches for the pattern
pre�x p0 . . . pi for some text position j. If the (m− 1)th counter is at most
k at any time, i.e., D[m−1]` ≤ k, then we know that the pattern occurs with
at most k mismatches in the current text position j (more precisely, j is the
end position of the matching area).

The preprocessing algorithm builds an array B of bit-vectors. More
precisely, we set B[c][i]` = 0 i� pi = c, and 1 otherwise. Then we can
accumulate the mismatches as

D ← (D << `) + B[tj].

2.3. A NEW TECH. FOR BIT-PARALLEL ALG. WITH COUNTERS 53

It means that the shift operation moves all counters at position i to
position i + 1, and e�ectively clears the counter at position 0. Recall that
the counter i corresponds to the number of mismatches for a pattern pre�x
p0 . . . pi. The + B[tj] operation then adds 0 or 1 to each counter, depending
on whether the corresponding pattern characters match tj .

If D[m−1]` ≤ k, the pattern matches with at most k mismatches. Note
that since the pattern length is m, the number of mismatches can even be m,
but we have allocated only ` = O(log k) bits for the counters. This means
that the counters can over�ow. The solution is to store the highest bits of
the �elds in a separate computer word o, and keep the corresponding bits
cleared in D:

D ← (D << `) + B[tj]
o ← (o << `) | (D & om)
D ← D & ∼om

The bit mask om has bit one in the highest bit position of each `-bit
�eld, and zeros elsewhere. Note that if o has bit one in some �eld, the
corresponding counter has reached at least value k + 1, and hence clearing
this bit from D does not cause any problems. There is an occurrence of the
pattern whenever

(D + o) & mm < (k + 1) << ((m− 1)`),

i.e. when the highest �eld is less than k + 1. The bit mask mm selects the
(m− 1)th �eld. Shift-Add clearly works in O(n) time, if m(dlog2(k + 1)e+
1) ≤ w. Otherwise, dm`/we computer words have to be allocated for the
counters, and the time becomes O(ndm log(k)/we) in the worst-case. Note
that on average the time is better, since only the words that are �active�,
i.e. the words that have at least one counter with a value at most k have to
be updated. This implies from the fact that the counters can only increase.

Note that the seemingly harder problem, string matching under edit
distance, can be solved more e�ciently with bit-parallelism, in O(ndm/we)
worst-case time [Mye99]. Unfortunately, this algorithm cannot be modi�ed
for the matching model in question, as it relies on the fact that adjacent
cells in the dynamic programming matrix can di�er only by −1, 0 or +1,
which is not the case under Hamming distance.

2.3.2 Counter-splitting
In this section we show how the number of bits for Shift-Add can be reduced.
The idea is simple. We use two levels of counters. The top level is as in

54 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

plain Shift-Add, i.e. we use ` = O(log k) bits. For the second level we use
only `′ = log2(log2(k+1)+1) bits. The basic idea is then to use a bit-vector
D′ of m`′ bits, and accumulate the mismatches as before. However, these
counters may over�ow every 2`′ steps. We therefore add D′ to D at every
2`′ − 1 steps, and clear the counters in D′. The result is that updating
D′ takes only O(dm log log(k)/we) worst-case time per text character, and
updating D takes only O(dm log(k)/we/2`′) = O(m/w) amortized worst-
case time. The total time is then dominated by computing the D′ vectors,
leading to O(ndm log log(k)/we) total time. It is easy to notice that no
`′ = o(log log k) can improve the overall complexity.

Note that as we add now values of at most 2`′ − 1 to the counters in
the D vector, instead of just 0 or 1 (as for D′), we must allocate ` =⌈
log2(k + 2`′)

⌉
+ 1 bits for them. However, this does not change anything

in asymptotic terms, i.e. ` ≤ dlog2(2k)e+ 1 = dlog2 ke+ 2 = O(log k) bits.
Now adding the two sets of counters can be done without causing an

over�ow, but the problem is how to add them in parallel. The di�culty is
that the counters have di�erent numbers of bits, and hence are unaligned.
The vector D′ must therefore be expanded so that we insert `− `′ zero bits
between all counters prior to the addition, i.e. we must obtain a bit-vector
x, so that

x[i]` = D′
[i]`′ .

Then we need to e�ectively add the counters in D and D′ as D + x. Note
that if the counters in D′ consume a whole machine word, i.e., w bits, then
the counters in D need O(w log(k)/ log log k) bits, and then the simplest
solution for computing x is to use look-up tables to do that conversion in
O(log(k)/ log log k) time. It may seem it requires O(2w) space and even
more preprocessing time. In the RAM model of computation it is assumed
that w = O(log2 n), where n, roughly speaking, corresponds to the length of
the longest addressable text, and hence we may use e.g. log2(n)/2 bit words
for indexing the table, and construct the �nal answer from two pieces. The
space is then just 2log2(n)/2 =

√
n words, which is negligible (in the asymp-

totic sense) compared to the length of the text. In practice we may use e.g.
w/2 or w/4 bit indexes, depending on w. Clearly, transforming (expanding)
the bit-vector D′ cannot be done in constant time, but fortunately it is per-
formed only every O(log k) steps, hence in the amortized sense the whole
operation is constant-time per input character. For long patterns the cost
becomes O(dm log log(k)/we) per character. Observe that this solution as-
sumes that w = O(log n). In Sect. 2.3.3 we show another method not based
on precomputation, and hence it removes the above assumption.

2.3. A NEW TECH. FOR BIT-PARALLEL ALG. WITH COUNTERS 55

Note that we cannot shift the vector D at each step as this would cost
O(dm`/we) time. Instead, we shift it only each 2`′ − 1 steps in one shot
prior to adding the two counter sets:

D ← D << (2`′ − 1)`.

As in plain Shift-Add, we must take care not to over�ow the counters.
The over�ow bit is therefore cleared before the addition, and restored after-
wards if it was set:

D ← ((D & ∼om) + x) | (D & om).

The �nal obstacle is the detection of the occurrences, but this is easy
to do. At each step j, we just add D′

[m−1]`′ and D[m−1−j mod `′]`. This
constitutes the true sum of mismatches for the whole pattern at text position
j. If the sum is at most k, we report an occurrence. Note that this takes
only constant time since we only add up two counters, one from each of
the two vectors (the whole counter sets are added only each 2`′ − 1 steps).
Note that as the vector D is not shifted at each step, we simulate the shift
by selecting the (m − 1 − j mod `′)th �eld when detecting the possible
occurrences. We �nally note that the parameter `′ can be adjusted to be a
power of 2, without any change in the algorithm complexity, and thus the
modulo operation needs no division or multiplication.

Summing up, we have an O(ndm log log(k)/we) worst-case time algo-
rithm for string matching under Hamming distance. Alg. 11 shows the
pseudocode.

2.3.3 Expanding and contracting counters
A weakness of the shown idea is its dependence on precomputed tables,
which limits the machine word to O(log n) bits, with a constant less than 1
in practice. This goes against the trend in modern hardware, where archi-
tectures with wide CPU registers appear more and more often. For example,
Intel Pentium4 CPU contains a special set of 128-bit registers, which could
not be fully used in the variant shown in the previous section, because of
the exponential preprocessing costs.

Now we show how to compute x[i]` = D′
[i]`′ parallely without precom-

puted tables, thus removing the exposed �aw. This requires that the coun-
ters are arranged in a di�erent way. Let us call the new vector D∗, replac-
ing D′. The counters in D∗ are grouped in blocks of ` bits. Hence each block
contains c = b`/`′c = O(log(k)/ log log k) counters, and the total number of

56 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

Alg. 11 Shift-Add-Log-Log-k(T, n, P,m, k).
1 `′ ← dlog2(log2(k + 1) + 1)e
2 ` ← dlog2(k + 1 << `′)e+ 1
3 iv ← 0
4 for i ← 0 to m− 1 do iv ← iv | (1 << (i`′))
5 for i ← 0 to σ − 1 do B[i] ← iv
6 for i ← 0 to m− 1 do B[pi] ← iv ∧ (1 << (i`′))
7 om ← 0
8 for i ← 0 to m− 1 do om ← om | 1 << ((i + 1)`− 1)
9 D′ ← 0; D ← om; j ← 0
10 while j < n do
11 for i ← 1 to 2`′ − 1 do
12 D′ ← (D′ << `′) + B[tj]
13 if D′

[m−1] + D[m−1−j mod (2`′−1)] ≤ k then report match
14 j ← j + 1
15 x ← Expand(D′)
16 D ← D << (2`′ − 1)`
17 D ← ((D & ∼om) + x) | (D & om)
18 D′ ← 0

blocks is b = dm/ce. Note that the total number of bits is still O(m log log k).
The possible `−b`/`′c`′ extra bits within each block are unused. The coun-
ters have a di�erent arrangement now. Let us denote the ith `′-bit counter
in the jth block of D∗ as D∗

[i,j]`′ . Then D∗
[i/b,i mod b]`′ = D′

[i]`′ . For example,
if c = 4 and b = 5 we use an arrangement

(0, 5, 10, 15)(1, 6, 11, 16)(2, 7, 12, 17)(3, 8, 13, 18)(4, 9, 14, 19),

where the parentheses represent blocks of ` bits, and the numbers denote
the permutation of the counters 0 . . . 19 within the blocks. The shift is no
longer by `′ bits, but by ` bits, hence we shift a whole block at a time. The
last block needs a special treatment; the last counter of the last block is
dropped out, and the rest is shifted by `′ bits and the block is moved to the
�rst block position (cleared by the shift operation). Hence we obtain

(−1, 4, 9, 14)(0, 5, 10, 15)(1, 6, 11, 16)(2, 7, 12, 17)(3, 8, 13, 18),

where −1 denotes a new counter introduced by the shift. This does not
pose any problems to the rest of the algorithm as long as we permute the
preprocessed B[·] vectors in the same way.

The bene�t of this permutation is that now D∗ is easy to expand without
precomputation. Note that the �rst counter of each block is aligned to start
at an `-bit boundary, and they are already in the order we use for the D

2.3. A NEW TECH. FOR BIT-PARALLEL ALG. WITH COUNTERS 57

vector. Hence we need only to mask the rest of the counters (bit-parallely)
away, and 1/c of the work is done. The counters 2 . . . c are obtained in the
same way, we shift the D′ vector to align each of the counters in the block in
turn to the �rst position, and mask the rest out. The �nal answer is then a
concatenation of the resulting c vectors. The cost of the shifting and masking
is O(1) per counter position (assuming that D′ �ts to w bits), and we have
c counter positions for the blocks. Hence the total cost is O(log k/ log log k),
including the concatenation. But again, this happens only every O(log k)
steps, so the amortized cost is o(1), not a�ecting the total time.

In some applications of our technique, we will need also the inverse of
the expand function, i.e. we need to compute x′[i]`′ ← y[i]` for all i e�ciently.
We call this function Contract(·). Note that this is not possible in general,
as the value of y[i]` may not �t into `′ bits. However, in the context we are
going to use this, we have a guarantee that `′ bits will su�ce. In general,
we may assume that we want to compute x′[i]`′ ← y[i]` & 1`′ for all i. It is
easy to see that this can be computed in parallel just by inverting and doing
in opposite order all the steps required for expanding the counters (or by
using precomputed tables, which makes the task trivial). Hence the time
bound remains also the same, including the amortized o(1) time, as we will
be doing this operation only in the companion of Expand .

2.3.4 Matryoshka counters
The above scheme can be improved by using more counter levels. We call
these Matryoshka counters, to re�ect their nested nature. Assume that we
use `1 = 2 bits in the �rst level, so this requires O(dm/we) time per text
character. The second level uses `2 = `1 + 1 = 3 bits, and so on, in general
the level i has `i−1 + 1 = i + 1 bits. The ith level is touched every 2`i−1 − 1
steps, and costs O(d`im/we/(2`i−1 − 1)) amortized time. The total time is
then of the form

O

log2 m∑

i

d`im/we
2`i−1 − 1

 = O

(
(m/w)

∞∑

i

i + 1
2i − 1

)
= O(m/w).

Hence, the total amortized worst-case time is O(ndm/we).
However, the method we used for detecting the occurrences is too costly

in this case (i.e. O(L) per text position, where L is the number of counter
levels). Our solution is to delay the occurrence reporting. The second high-
est level counters have blog2 kc+O(1) bits, so the last level is touched every
I = O(k) steps of the algorithm, and at precisely these steps we can detect

58 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

the occurrence in O(1) time, examining only one counter. But at this time
I − 1 highest counters positions have been lost. We therefore add I − 1 new
(high) counter positions for each level, which are shifted and added together
as any other counter, but do not accumulate any errors through the B[·]
vectors. In other words, these I − 1 new counters are just to preserve the
accumulated error values without shifting them out. Hence at every Ith
step we detect the possible I occurrences for the last I text positions using
the �over�ow� counter positions. This costs only O(1) time per text char-
acter, even if implemented naïvely. Finally note that the over�ow counters
increase the vector lengths only by a constant factor even in the worst case
(k = m− 1), and hence the time bound is preserved.

Expanding the Matryoshka counters without precomputation is possible
as well, using a method similar to that of Sect. 2.3.3. This time we use a
constant number of bits per counter in the �rst level, and double it in each
next level, i.e. we set `i+1 = 2`i. The initial counter arrangement is simply
the identity permutation, and in the second level we use a prebuilt mask
to separate the odd and even counter positions, and shift the counters in
odd positions to the end of the row of counters (possibly several machine
words from the original position). The process for the higher counter levels
is similar, but the counters are wider. The invariant of the counter shifting
is that the set of counters is divided in three groups only (one of them having
always a single counter, the last one), and the counters of each group are
shifted by the same number of bits, i.e., the overall work per input machine
word is constant. The summation is analogous to the one above, with a new
formula for `i, which again leads to O(ndm/we) time.

2.4 Average-Optimal Shift-Add for short patterns

In the previous section we showed how to improve the worst case of the Shift-
Add algorithm. Now we show how to apply our technique of skipping text
characters, presented in Chapter 1, basically for exact string matching, to
Shift-Add. This is not di�cult since Shift-Add resembles Shift-Or, for which
we originally devised that idea. The pattern is again splitted to q partitions.
If some of our q patterns occur with at most k mismatches, then we verify
if the whole pattern occurs with at most k mismatches. Note that this
is di�erent from most of the other pattern partitioning based approaches,
that partition the pattern into q pieces, and then search the pieces with
bk/qc errors. This latter approach leads to O(nk logσ(m)/m) average time
in general, and works for k = O(m/ logσ m). This time is not optimal,

2.4. AVERAGE-OPTIMAL SHIFT-ADD FOR SHORT PATTERNS 59

Alg. 12 Average-Optimal-Shift-Add(T, n, P,m, q, k).
1 ` ← dlog2(k + 1)e+ 1
2 iv ← 0
3 for i ← 0 to m− 1 do iv ← iv | (1 << (i`))
4 for i ← 0 to σ − 1 do B[i] ← iv
5 iv ← (1 << (`− 1))− (k + 1)
6 h ← 0; mm ← 0; hm ← 0; om ← 0
7 for j ← 0 to q − 1 do
8 for i ← 0 to bm/qc − 1 do
9 B[P [iq + j]] ← B[P [iq + j]] ∧ (1 << h)
10 h ← h + `
11 hm ← hm | (((1 << `)− 1) << (h− `))
12 mm ← mm | (1 << (h− 1))
13 iv ← iv | (iv << h)
14 for i ← 0 to σ − 1 do B[i] ← B[i] + iv
15 for i ← 0 to bm/qcq − 1 do om ← om | (1 << (((i + 1)`)− 1))
16 D ← 0; o ← om; i ← 0
17 do
18 D ← (D << `) + B[T [i]]
19 o ← (o << `) | (D & om)
20 D ← D & ∼hm & ∼om
21 if (o & mm) 6= mm then Verify(T, i, n, P, m, q, k, o)
22 o ← o & ∼hm
23 i ← i + q
24 while i < n

whereas our approach leads to O(n(k + logσ m)/m) optimal average time.
Adapting the Shift-Add algorithm to multiple patterns requires some

modi�cations on the preprocessing and searching algorithms. The problem
is how to detect the matches of several patterns in parallel. This is solved
by initializing the counters to 2`−1 − (k + 1), instead of to zero. This trick
has been used before, e.g. in [CIN+05]. This ensures that the over�ow bit is
activated immediately when the counter reaches a value k + 1, and is there-
fore easy to detect for all patterns in parallel. This could be implemented
explicitly, by setting the �rst �eld in D of each pattern to this value after
the shift operation. Instead, we add 2`−1 − (k + 1) to all �elds of the B[c]
vectors that correspond to the �rst character of each of the patterns. This
ensures that the counters in D get correctly initialized, assuming the �rst
counters of each pattern were zero before the addition. This zeroing is done
explicitly with a bit mask. Alg. 12 gives the code.

The probability of a match of our bm/qc length pattern piece with
at most k mismatches is exponentially decreasing if k/bm/qc < 1 − e/σ
[Nav01a]. For our q = O(m/ logσ m), this becomes k/ logσ m < 1 − e/σ.

60 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

This condition ensures that the probability of a veri�cation is γbm/qc, where
γ < 1, and hence the number of veri�cations is negligible, and the total
average time is O(n logσ m/m), which is again optimal. This is good only
for reasonably large alphabets and very small k, at most O(logσ m). For
larger k one can choose q = O(m/(k + logσ m)), to get again an optimal
O(n(k + logσ m)/m) average time. Linear worst-case time (for short pat-
terns) can be obtained in similar way as in the case of Shift-Or. For long
patterns all the bounds must be multiplied by O(m log2(k)/w).

2.5 Other applications of Matryoshka counters

There exist many algorithms based on techniques similar to Shift-Add. In
the subsections below we present our solutions [FG09c] to the problems of
(δ, γ)-matching, (δ, k)-matching, intrusion detection and episode matching.
Additionally, in [FG09c] we presented an algorithm for (δ, α)-matching, re-
ducing the worst-case complexity of our previous algorithm [FG06c] from
O(ndm log(α)/we) to O(ndm log log(α)/we). Still, the algorithm is rela-
tively complex and requires understanding of its predecessor, which will be
described in Sect. 3.10. From those reasons, we omit the details here.

2.5.1 (δ, γ)-matching and (δ, k)-matching
Let us now consider (δ, γ)-matching [CCI+99, CIN+05]. In this problem,
the pattern matches a text area if |pi− tj−m+1+i| ≤ δ for all i = 0 . . . m− 1,
and additionally the sum of all those errors does not exceed γ. Note that a
mismatch at a particular position can be handled by adding to the accumu-
lated di�erences the value γ + 1. The bit-parallel solution for this problem
is very similar to Shift-Add, and runs in O(ndm log(γ)/we) worst-case time
[CIN+05]. The algorithm reserves only ` = O(log γ) bits per counter, and
the B table is preprocessed using the δ-condition. The rest of the algorithm
mimics Shift-Add, just taking care not to cause counter over�ows in a similar
manner as before.

Now we present our Matryoshka solution for this problem. In the fol-
lowing we assume w = O(log n), but generalization to any w and using the
counter arrangement from Sect. 2.3.3 is possible too. Consider �rst the two-
level variant. We will handle the mismatches (i.e. di�erences |pi − tj | > δ)
separately, and hence use two preprocessed tables and state vectors to rep-
resent the search state. The small counters again have `′ bits, the actual
value being �xed later. Let Bδ be the table for the absolute di�erences,
i.e. Bδ[c][i]`′ = |c − pi| if |c − pi| ≤ δ, and 0 otherwise. Likewise, the

2.5. OTHER APPLICATIONS OF MATRYOSHKA COUNTERS 61

mismatches are recorded using table Bγ as Bγ [c][i]`′ = 0 if |c − pi| ≤ δ,
and 1 otherwise. The di�erences can now be accumulated as in Shift-Add:
Dδ ← (Dδ << `′) + Bδ[tj]. In the case of mismatches, the added value
is 0, so we record the mismatches separately: Dγ ← (Dγ << `′) | Bγ [tj].
Note that the shift operation automatically initializes the �rst �eld of the
Dγ vector to 0. Also observe that we could just use `′ = 1 (for the mismatch
case), but the total complexity would not improve.

For the top level we use only one state vector, D. The mismatches
and accumulated sums exceeding γ are represented with a value γ + 1 (or
greater). However, as the value of the bottom level counter can be 2`′−1, we
use ` =

⌈
log2(γ + 2`′)

⌉
+ 1. The values in Dδ are added to D as in the case

of plain Shift-Add, again expanding the Dδ counters �rst. The Dγ vector
is expanded as well, and then shifted to left by `− 1 positions, resulting in
counter values of at least γ + 1. This is added to D as well. The over�ows
are handled precisely as in plain Shift-Add.

It should be clear that the above approach works correctly. Let us now
estimate the complexity of the scheme. The bottom level counters may
over�ow at every 2`′/δ steps, and hence the overall total cost is of the form

O

(
n
⌈
m`′/w

⌉
+

n

2`′/δ

⌈
m log(γ + 2`′)/w

⌉)
, (2.1)

where the �rst term comes from the bottom level counters, and the second
term from the top level counters. The bottom level counters should have at
least `′ = dlog(δ + 1)e bits, since the accumulated values can reach δ. Let
us consider values of the form `′ = c log2(δ), for some c ≥ 1. Note that we
require c log2(δ) ≤ log2(γ), i.e. c ≤ log2(γ)/ log2(δ). The maximum value of
a bottom level counter is now 2c log2(δ) = δc, and the complexity becomes

O
(
ndmc log2(δ)/we+

n

δc−1
dm log(γ + δc)/we

)
, (2.2)

which is optimized for

c = logδ

(
log2(γ + δc)

log2(δc)

)
+ 1 =

log2

(
log2(γ+δc)

log2(δc)

)

log2(δ)
+ 1. (2.3)

Taking that δc = O(γ), and that the second term of the complexity decreases
when c increases, the total complexity can be (somewhat pessimistically)
upper-bounded by

O(ndm(log2 log(γ) + log2(δ))/we). (2.4)

62 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

This can be improved by using more levels, and reserving only O(i log(δ))
bits for a level i in the hierarchy of counters. The time then becomes

O

(∑

i

d`im/we
2`i−1/δ

)
= O

(
m log(δ)

w

∞∑

i

δ(i + 1)
δi

)
= O

(
m log(δ)

w

)
(2.5)

per text character, and O(ndm log(δ)/we) in total.
Another problem example is δ-matching under the Hamming distance

((δ, k)-matching). A trivial solution is to modify the Shift-Add algorithm so
that the array B is preprocessed with respect to δ-matching of characters.
In this way, O(ndm log(k)/we) worst-case time is achieved. Just as trivially,
we can apply our technique to improve the time complexity to O(ndm/we).
Note that in the RAM model of computation this is O(nm/ log n).

We note that if the pattern is long and the alphabet size, σ, is small,
a practical alternative can be a simple adaptation of the classic FFT-based
algorithm of Fischer and Paterson [FP74] for matching under Hamming
distance. To this end, the bit-vectors used in the FP algorithm should
respect the δ match relaxation, but only for one of the two sequences, e.g.,
the pattern. The overall time complexity is like in the original algorithm,
O(nσ log m) in the worst case.

2.5.2 Intrusion detection and episode matching
A close relative to α-matching is searching allowing k insertions of symbols
into the pattern. In other words, we want to �nd all minimal length text
substrings t, such that id(P, t) ≤ k, where id(P, t) is the minimum number of
symbols inserted to P , to convert it to t. It follows that if P is a subsequence
of t, then id(P, t) = |t| − |P | = |t| − m, and ∞ otherwise, and that m ≤
|t| ≤ m + k if t matches P with at most k insertions. This has important
applications in intrusion detection [KNM03]. The problem can be solved
using dynamic programming [KNM03]. We de�ne a vector C of counters:
Ci = id(p0...i, th...j), for i = 0 . . . m and some h. The initial values are
C0 = 0, and Ci>0 = ∞. (The value ∞ can be represented as any value > k
in practical implementation.) Therefore, the goal is to report all j such that
Cm ≤ k. The computation of the new values of C, given the old values Co,
is based on the following recurrence:

Ci = Co
i−1, if pi = tj , and Co

i + 1 otherwise. (2.6)

The obvious implementation of the recurrence leads to O(nm) worst-case
time. It was then shown by Kuri et al. [KNM03] how to compute Ci using

2.5. OTHER APPLICATIONS OF MATRYOSHKA COUNTERS 63

bit-parallelism, which resulted in an O(ndm log(k)/we) worst-case time al-
gorithm. We brie�y present the Kuri et al. algorithm as this is the starting
point of our solution.

The Ci counters are packed into machine words. Only error counts up
to k + 1 are interesting, so any Ci value above k could be replaced by k + 1,
and a similar e�ect is achieved using over�ow bits, a technique known from
Shift-Add. In this way, the counters occupy ` = dlog2(k + 1)e bits each. A
table B storing σ bit-vectors of length m(`+1) is built in the preprocessing.
Each (`+1)-bit �eld of B[c] is set to 01` if c = pi, and 0`+1 otherwise. Note
that the highest bit in each �eld is 0. Also the state vector D has m(` + 1)
bits, initialized to 0s. If the counters could use O(log k) bits, the update
formula (invoked once per text character) could be simply

Dnew = (B[tj] & (D << (` + 1))) | (∼B[tj] & (D + (0`1)m)), (2.7)

but the real algorithm is somewhat more complicated (we omit details for
lack of space). Let us only note for the formula above that each �eld of B[tj]
selects between (D << (` + 1)) operation, which corresponds to Ci ← Co

i−1

assignment in the plain dynamic programming formula, and (D + (0`1)m),
which replaces Ci ← Co

i + 1 assignment.
It might seem that nested counters could be used for this algorithm just

as easily as with Shift-Add, but there is actually a new problem. As seen in
Eq. 2.6, the new values Ci depend on the old values of C in less �predictable�
way than it was in Shift-Add. In Shift-Add the counter values are simply
shifted left (i.e., to the next position) with each text character (and then
their counts possibly increased by 1), while here they depend on a condition.
Let us assume a two-level counter scheme. The manipulations on counters
should be done both in the bottom level and the top level. The top level
updates should be done infrequently, and here is where the problem lies, as
it seems di�cult to delay such operations and then perform a bulk update
in constant time. We found a compromise solution though.

Our algorithm gives an improvement over the Kuri et al. algorithm if
log k = ω(log w). This may seem quite restrictive but for the intrusion
detection problem large values of k (exceeding m) are quite typical. The
basic observation is that during the inner loop the set of distinct values in
the top level counters is never extended, as the counter values are simply
copied from one to another (Ci ← Ci−1 operations). So, we do not need
to know their actual values, only we need to distinguish those m counters
somehow. To this end, just before the inner loop we label the top level
counters. Fortunately, we do not need to give them truly unique labels
(which would imply log m bits per label) but only choose from a smallest

64 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

set of labels which prevents from losing identity of any counter during the
inner loops. Since the copy operations always involve only adjacent counters,
it is enough to assign label i mod 2`′ to a counter at position i. In this way,
we need `′ bits per label. Now, for every text character also the upper level
may change, but all the copy operations on labels are performed in parallel,
with O(m`′/w) time per character.

When the inner loop is over, we need to get back the true top level
counters, to increase their counts with values from the bottom level. This
requires remapping with the labels mentioned above, re�ecting the actual
label arrangement. A brute-force rearrangement takes O(m) time, after
which we we can update the top level counters with the respective counts
from the bottom level, in O(m`/w) time.

The total time spent on bottom level operations is O(ndm`′/we). The
total time spent for the top level is O(ndm`′/we+n/2`′(m+dm`/we)). The
sum of the above is optimized for `′ = log w, which gives O(ndm log(w)/we)
overall worst-case time complexity.

Finally, assuming that w = Θ(log n), we can improve the brute-force
counter rearrangement to take just O(m/w) amortized time per text char-
acter, by using look-up tables. In this case we can use `′ = Θ(log log k), and
` = Θ(log k), giving O(ndm log log(k)/ log ne) total time.

We note in passing that for the opposite scenario, i.e., for small k, a
theoretical O(nk)-time algorithm may be of lower complexity. We mean an
application of the classic technique of Landau and Vishkin [LV86], where
they build a su�x tree with LCA (lowest common ancestor) support over
the concatenated sequence P#T (# is a unique separator), in linear time,
and then, for every text character, jump between matching subsequences of
P in constant time using LCA queries, hence �nding a match or resolving
a mismatch in O(k) time per text position. Translating to our problem,
after �nding each pair of equal substrings, the position in the pattern is
shifted by one, while in the text the position is shifted by two, i.e., a single
(mismatching) character is skipped.

A similar problem to matching with k-insertions is episode matching,
which can be stated like that: Find the shortest text substring(s) that con-
tain P as a subsequence. Using our technique, for k = n−m, and keeping
track of the minimum values, immediately gives O(ndm log(w)/we) time
complexity as above.

This is not always better than the best known algorithms for this problem
[DFG+97], working in O(nm/ log m) and O(n+s+nm log log(s)/ log(s/m))
time, using O(s) additional space, but our algorithm dominates over the
former result if m is small enough, namely if log m = o(w/ log w), and

2.6. GLOBAL SIMILARITY MEASURES 65

either uses less time or less space than the latter algorithm.

2.6 Global similarity measures

Sometimes we are interested to know how similar two whole sequences are,
rather than �nding approximate occurrences of one of them (the shorter
one) in the other. To compare sequences e�ectively, we need a similarity
measure. Perhaps the most widely used global measure of similarity of two
sequences is the longest common subsequence (LCS) measure, a standard
tool in DNA sequence analysis. Other applications of the LCS measure are,
e.g., comparisons of two di�erent versions of a program source �le (Unix
di� tool) and plagiarism detection [GB06]. The LCS problem is surveyed in
[Apo97, BHR00].

2.6.1 The LCS problem
The longest common subsequence problem is de�ned as follows. Given two
sequences, A = a0 . . . am−1 and B = b0 . . . bn−1, over an alphabet Σ, �nd
the longest subsequence 〈ai1 , ai2 , . . . , ai`〉 of A such that ai1 = bj1 , ai2 =
bj2 , . . . , ai` = bj`

. The found sequence may not be unique. Often, only
a simpli�ed version of this problem is considered, when one is interested
in telling the length of the longest common subsequence rather than the
sequence itself. Note that the LCS problem is a dual of the indel distance:
2LCS(A,B) = n + m − id(A,B) [WF74]. It is however accepted to speak
about LCS when we are interested in �nding the global measure of similarity,
and the indel distance (being a dissimilarity measure) when a pattern shifts
over a (much) longer text.

Despite over 30 years of research, surprisingly little can be said about the
worst-case complexity of LCS. In other words, the gap between the proven
lower bound and the best worst-case algorithm is huge. It is known that
in the very restrictive model of unconstrained alphabet and comparisons
with equal/unequal answers only, the lower bound is Ω(nm) [WC76], which
is reached by a trivial DP algorithm. If the input alphabet is �xed, the
lower bound improves to Ω(σn), but if total order between alphabet symbols
exists, and ≤-comparisons are allowed, then the lower bound improves to
Ω(n log n) [Hir78a]. The latter assumption is very natural in real-world
applications, yet, even for this �easiest� scenario, the best known algorithm
for the worst case achieves O(nm/ log n) [MP80], a mild improvement over
a plain DP algorithm.

66 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

A simple idea proposed in 1977 by Hunt and Szymanski [HS77] has
become a milestone in LCS reseach, and the departure point for the the-
oretically best algorithms for this problem [AG87, EGGI92]. The Hunt�
Szymanski (HS) algorithm is essentially based on dynamic programming,
but it visits only the matching cells of the matrix, typically a small fraction
of the entire set of cells. This kind of selective scan over the DP matrix is
called sparse dynamic programming (SDP).

Before we present the outline of the algorithm, we need a de�nition. We
will say that a cell (i, j) of the dynamic programming matrix M stores a
match of rank k i� ai = bj and LLCS(a1...i, b1...j) = k.

Now we can brie�y present the HS algorithm. In the preprocessing, lists
of successive occurrences of all alphabet symbols in the shorter sequence,
A, are gathered. This requires O(m + σ) space and time, and enables to
move from one matching cell to the next one in constant time. We assume
that σ = O(n), hence this factor is negligible in practice. For eliminating
a little practical issue, the matches in rows can be traversed from right to
left, instead of a more natural left-to-right order. During the main stage of
processing, another array, T , is also maintained, which stores at position j
the leftmost seen-so-far column with a match of rank j. Note that the values
in the �occupied� part of T are strictly increasing (the non-written yet cells
in the right part of T may be all initiated with a �xed value, e.g., m+1). For
each visited cell (i, j), we look for the minimum index t such that T [t] ≥ j.
This can be performed with e.g. binary search. We need to distinguish
between T [t] = j and T [t] > j; in the former case, the current match is
irrelevant and we skip to the next one, in the latter case, we update T [t]
with the current j. After processing all the matches from M , the maximum
achieved rank of a match is the desired LCS length.

Let us denote the number of all matches in M with the symbol R. It
is easy to notice that the time complexity of the algorithm depends on
how fast we can �nd, for each of R matches, the proper t to satisfy the
aforementioned inequality. The plain binary search immediately leads to
O(n + R log m) time, but since the non-empty range of T never has more
than ` = LLCS(A,B) elements, it is more precise to express the worst-case
complexity with O(n + R log `). This complexity includes the preprocessing
cost. Note that in the worst case, i.e., for R = O(nm), this complexity is
superquadratic, i.e., even worse than of the plain DP algorithm.

The Hunt�Szymanski concept was an inspiration for a number of subse-
quent algorithms for LCS calculation. Finding the rank of a match can be
performed in a more re�ned way than with a binary search, in particular,
using the van Emde Boas (vEB) dynamic data structure [vEBKZ77], which

2.6. GLOBAL SIMILARITY MEASURES 67

Alg. 13 BP-LCS(A,m, B, n).
1 for i ← 0 to σ − 1 do PM [i] ← 0m

2 for i ← 0 to m− 1 do PM [ai] ← PM [ai] | 0m−i−110i

3 V ← 1m

4 for j ← 0 to n− 1 do
5 U ← V & PM [bj]
6 V ← (V + U) | (V − U)
7 r ← 0; V ← ∼V
8 while V 6= 0m do
9 r ← r + 1; V ← V & (V + 1)
10 return r

is applicable if the universe of keys is nicely bounded (roughly speaking, if
σ is not much greater than max{n,m}).

In our problem, this translates to O(n + R log log m) worst-case com-
plexity. The possibility of using the vEB structure was noticed already by
Hunt and Szymanski in their original work. There are even better (and more
complex) theoretical algorithms [AG87, EGGI92] based on the idea of Hunt�
Szymanski, where for example the symbol R is replaced with D, the number
of so-called dominant matches (D ≤ r). The best of them, the algorithm of
Eppstein et al. [EGGI92], achieves O(D log log(min(D, nm/D))) worst-case
time (plus preprocessing). Note that this complexity can be upper-bounded
with nm for any value of D.

A di�erent approach is to use bit-paralellism to compute several cells of
the dynamic programming matrix at a time. The key observation is that the
LCS values in successive columns (or rows) di�er only by 0 or 1. There are
three such algorithms [AD86, CIPR00, Hyy04], all working in O(dm/wen)
worst-case time, after O(σdm/we+m)-time and O(σm)-space preprocessing.
Alternatively, the search time could be O(dn/wem) (where n is the length of
the longer sequence), but practical implementations are column-wise. The
fastest of those three algorithms is Hyyrö's one [Hyy04] (Alg. 13), being a
simpli�cation of the scheme from [CIPR00]. Note that the main loop, lines
4�6, contains only four arithmetical or logical operations (assignments and
the loop end check not counted), less by one than its predecessor.

2.6.2 LCS-related problem variants
One of the oldest problems related to LCS is the longest increasing sub-
sequence (LIS) problem. In LIS, we are given a sequence S of integers
(w.l.o.g. we can assume they are unique), and our task is to �nd the longest
strictly increasing subsequence of S. A dynamic programming algorithm

68 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

with O(n log n) complexity is essentially due to Schensted [Sch61], and its
optimality in the comparison based model was proved later, by Fredman
[Fre75] (more precisely, he proved that n log n− n log log n + Θ(n) compar-
isons are necessary and su�cient to compute the LIS of an integer sequence
of length n). Actually, the length of LIS can be computed with any general
algorithm �nding the length of LCS(A, B), where A = S, and as sequence B
we take Q sorted in ascending order. Hunt and Szymanski [HS77] point out
that their LCS algorithm straightforwardly achieves the O(n log n) complex-
ity for LIS; the variant of their algorithm with the van Emde Boas priority
queue even improves this result to O(n log log n), which does not contradict
the mentioned optimality, since the vEB structure assumes the RAM model
of computation.

What is less obvious is that the problem transformation is possible also
the other way around, i.e., having an algorithm for solving LIS, we can
also solve the LCS problem [Gus97, BHR00]. To this end, it is enough to
scan over the matching cells in the DP matrix, row by row, and list their
column numbers in reverse direction. The result is a sequence of decreasing
runs of integers. Now, running any LIS-�nding algorithm over this sequence
outputs the y coordinates of the items belonging to an LCS sequence (their
corresponding x coordinates may be kept as satellite data, which completes
the required algorithm's output).

If S is regarded as a circular bu�er, the LIS problem turns into LICS
(longest increasing circular subsequence), which, surprisingly perhaps, hap-
pens to be much harder. In other words, now the task is to �nd a longest
subsequence of any rotation of a given sequence such that each integer
of the subsequence is smaller than the integer that follows it. LICS has
applications in bioinformatics. For this problem, there is no single algo-
rithm outperforming the others. Tiskin [Tis08] gave a O(n3/2)-time solu-
tion. Deorowicz [Deo09] proposed a hybrid algorithm of time complexity
O(min(n`, n log n + `3 log n)), where ` is the length of the output sequence.
Very recently, Deorowicz and Grabowski [DG09b] slightly improved the lat-
ter algorithm to achieve O(min(`3, n`) log

⌈
n/`2

⌉
+ n log `) time, which is

better than its predecessor if ` is close to its average value, Θ(
√

n).
Another problem from the same family is to �nd the slope-constrained

longest increasing subsequence (SLIS) [YC08]. The task is to �nd a maximum-
length increasing subsequence of S, si1 < si2 < · · · < sik for i1 < i2 < · · · <
ik, such that the slope between two consecutive points is no less than the
input ratio, i.e., sir+1

−sir

ir+1−ir
≥ m, 1 ≤ r < k. In [YC08] Yang and Chen

gave an O(n log `)-time algorithm. Based on it and assuming the RAM ma-

2.6. GLOBAL SIMILARITY MEASURES 69

chine, Deorowicz and Grabowski [DG09b] modi�ed this algorithm to achieve
O(nmin(

√
log `/ log log `, log log n)) worst-case time.1

Yet another variation is the constrained LCS problem (CLCS) [Tsa03].
In CLCS, the computed LCS must also contain, in order, all characters
of a third sequence (the constraint), of length r. The problem motivation
comes from bioinformatics: to compute the homology of two biological se-
quences it may be important to take into account a common speci�c struc-
ture [Tsa03]. Several algorithms of O(nmr) time complexity are known (e.g.,
[Pen03, AE05] for this problem, and recently there were shown two output-
dependent algorithms, with time complexity expressed either in terms of R,
the number of matches between sequences A and B, or ` = LLCS(A, B).
Deorowicz [Deo07] achieved O(r(m` + R) + n), while the algorithm of Il-
iopoulos and Rahman [IR07] gets O(rR log log n + n). Clearly, those two
algorithms are also O(nmr) (or worse) in the worst case. As a side-note, we
point out that in the important case of n = m, the complexity formula in the
Deorowicz algorithm can be shortened to O(rn`). Indeed, ` is equal to the
number of antichains (see, e.g., [Apo97] for a de�nition) in the DP matrix
for calculating LCS(A,B), and hence any antichain cannot contain more
than 2n− 1 cells, we obtain R ≤ (2n− 1)`, which immediately leads to the
simpli�ed complexity formula. Of course, in this reasoning, the condition
n = m can be replaced by n = Θ(m). Experiments show that Deorow-
icz's algorithm, especially if strengthened with a heuristic to reduce the set
of cells to compute, is at least a few times faster than all other existing
algorithms [DO09].

2.6.3 The LCTS problem, theoretical and practical solutions
One of the LCS variations, introduced relatively recently [LU00], has appli-
cations in music information retrieval. An important trait of similar melodic
sequences is that they can di�er in the key, but humans perceive them as
same melodies. More formally, the problem of longest common transposition-
invariant subsequence (LCTS) that we talk about is to �nd the length of the
longest subsequence 〈ai1 , ai2 , . . . , ai`〉 of A such that ai1 = bj1 + t, ai2 =
bj2 + t, . . . ai` = bj`

+ t, for some −σ < t < σ. In other words, we look for
the length of the longest subsequence of A and B matching according to
any transposition. This corresponds to a music phrase (melody) shifted to
another key, which is perceived by humans as the same melody. The alpha-
bet size in music (MIDI) application is usually 128. As long as this does

1This result can be improved to O(n log log `), which will be presented in the planned
journal version of the cited work.

70 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

not lead to confusion, we will denote the length of LCS (LCTS) by LLCS
(LLCTS). A naïve algorithm for calculating LCTS is to run the dynamic
programming algorithm independently for each transposition, which yields
O(nmσ) time. Almost all existing better solutions belong to one of the two
categories: they are bit-parallel or based on sparse dynamic programming.

Adopting any of the bit-parallel LCS-solving algorithms for the LCTS
problem is straightforward: it is enough to run the LCS routine for each of
the 2σ−1 transpositions separately, achieving O(nσdm/we) time complexity
(not counting a preprocessing stage). Experiments show [Deo06] that this
approach is quite practical.

It may seem that the preprocessing time for a bit-parallel LCTS algo-
rithm must be O(σ2dm/we+mσ), i.e., the preprocessing routine for LCS is
performed 2σ− 1 times in total, once for each transposition. This, however,
can be easily reduced to O(σdm/we + m) (and similarly the space can be
reduced), by merely using LCS preprocessing for the LCTS problem and
replacing the symbol bj in the current column with the symbol λ = bj − t
(provided that the resulting symbol is within the alphabet range), where t
is the current transposition [DG09a]. This idea was found practical. Less
trivially, the preprocessing can be improved even more, to O(m) worst-case
time, for the price of increasing the space by a constant factor, using an old
array initialization idea [Meh84, Sect. III 8.1]. This technique, however, is
unlikely to be practical in this setting, as the number of array accesses in
the search phase gets multiplied by 3.

Sparse dynamic programming has been successfully used for the LCTS
problem as well [MNU05]. In this setting, the DP matrix is a set union of
matches (cells) belonging to di�erent transpositions, and all of them may be
visited in a single scan over the matrix, switching between models. Applying
the HS technique for LCTS is thus straightforward, with O(nm log m) worst-
case time. Mäkinen et al. [MNU05] showed how this result can be improved
to O(nm log log m), using the vEB data structure [vEBKZ77]. Grabowski
and Navarro [GN04] suggested another idea, which was to run a brute-force
computation over small enough subarrays (blocks of k × k cells), such that
cannot contain too many di�erent transpositions, and the scores for the
remaining transpositions are only copied into the subarray corners. This
gives immediately O(nm

√
σ) complexity for k = σ1/4, and partitioning the

subarrays recursively improves the time complexity to O(nm log σ).
Finally, Navarro et al. combined the technique of working on blocks

[GN04] with the SDP algorithm from [MNU05], to achieve an algorithm
working in O(nm log log min(m,σ)) time [NGMD05]; whether O(nm) time,
for alphabet size σ = O(nε), ε > 0, is possible for LCTS remains open.

2.6. GLOBAL SIMILARITY MEASURES 71

The same result, but in a somewhat simpler algorithm, was obtained by
Deorowicz [Deo06]. Also, in the same paper he presents a related variant,
with a slightly worse time complexity, namely O(nm log σ/ log w),2 which
however wins in his thorough tests for MIDI and for uniformly random
data if the alphabet is large enough (say, 96 or more). Note that this time
complexity equals to O(nm) as long as σ = O(logO(1) n), since w = Ω(log n).

Another approach was taken by Lemström et al. [LNP05]. Their branch-
and-bound algorithm superimposes groups of transpositions, in order to
eliminate, in a lucky case, many of them as if only a single transposition
were checked. Additionally, a variant strengthened with bit-parallelism was
presented. Despite its elegance, this method cannot keep pace in practice
with the best BP or SPD algorithms, even in its BP variant [Deo06], and
in the worst case the time complexity of the basic variant loses even to the
naïve DP algorithm run O(σ) times.

Recently, Grabowski and Deorowicz [GD08, DG09a] proposed a practice-
oriented hybrid algorithm for LCTS, making use of a simple observation: if
the alphabet is small, the BP approach is a clear winner, but for large enough
alphabets SDP algorithms start to dominate. More precisely, they used
Hyyrö's bit-parallel algorithm [Hyy04] (later called the BP component) for
frequent transpositions, and the most practical LCS algorithm by Deorowicz
[Deo06] (later called the HS component, since it can be classi�ed as a variant
of the Hunt�Szymanski algorithm) for rare ones. The latter algorithm needs
O(nm log σ/ log w) time for a single transposition. A quick and rather robust
heuristic was used to distinguish between the two groups of transpositions.
Thorough experiments on music data (σ = 128) showed that the hybrid
approach overcomes the better of its two components (which was usually
the BP algorithm, especially in tests with w = 32) by a factor of 1.4 to 2.0
in 32-bit implementations, and 1.1 to 1.7 in 64-bit implementations, where
the larger gaps are for longer sequences. On uniformly random data the
improvements were smaller, and they rarely exceeded the factor 1.2. The
gains were greater for Gaussian distribution of data, and they sometimes
exceeded the factor 2.0, even in the 64-bit implementations.

The music data were a concatenation of 7543 music pieces, obtained by
extracting the pitch values from MIDI �les. The total length is 1 828 089
bytes. Although the pitch values are in the range 0 . . . 127, this data is far
from random; the six most frequent pitch values occur 915 082 times, which

2As long as w = O(logO(1) n), which is a reasonable assumption. For w = O(nε),
the complexity grows by the factor log log w, i.e., O(log log n), using the algorithm by
Brodnik et al. [BMM97]. For a discussion, see [DG09a].

72 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

0 20 40 60 80 100
0

20

40

60

80

100

RND64 n=m=1024

MUSIC n=m=1024

% transpositions

%
m

a
tc

h
e

s

Figure 2.3: LCTS, % matches vs. % transpositions (transpositions sorted by fre-
quency)

is approximately 50% of the whole text, and the total number of di�erent
pitch values is just 55. Consequently, the number of possible existing �trans-
positions�, i.e., di�erences between any pairs of characters from two di�erent
excerpts of this �le, is much lower than the theoretical maximum of 255.
This dataset was previously used in the literature (e.g., [FMN06, Deo06]),
for various MIR-oriented problems, including LCTS.

A set of 101 pairs of randomly extracted excerpts from the text was
generated. The sequence lengths, n and m, were varied, but always n = m.
The reported times are the medians over all 101 trials.

Fig. 2.3 demonstrates the relation between the (percentage) amount of
most frequent transpositions and the amount of matches covered by them.
We can see, for example, for the MIDI data, that the top 20% of the existent
transpositions (sorted by frequency) already cover more than half of the
matches, while 60% of the existent transpositions are enough to cover over
90% of matches. For the uniformly random data, as expected, the curve is
more �at.

Fig. 2.4 shows the overall processing time of our hybrid in the function
of the minimal number of matches in transpositions handled by the HS
component. Basically the same phenomenon, in the function of varying
alphabet size (only for the two random distributions), is also presented in
Fig. 2.5. Note that extreme parameters of the thresholds trigger a single
component for all transpositions; in most cases, for alphabet size up to 64
or 128 (depending on the dataset and whether the implementation is 32- or
64-bit), the �single best� component is the BP algorithm, while for larger

2.6. GLOBAL SIMILARITY MEASURES 73

0.001 0.01 0.1 1 10

0.5

1

2

5

10

20

50

100

200
32-bit

64-bit

32-bit

64-bit

threshold [%]

ti
m

e
[m

s
]

0.001 0.01 0.1 1 10

0.5

1

2

5

10

20

50

100

200

32-bit

64-bit

32-bit

64-bit

threshold [%]

ti
m

e
[m

s
]

0.001 0.01 0.1 1 10

0.5

1

2

5

10

20

50

100

200

32-bit

64-bit

32-bit

64-bit

threshold [%]

ti
m

e
[m

s
]

a) b) c)
Figure 2.4: LCTS, overall processing time of the hybrid algorithm with varying
threshold of the minimal number of matches in transpositions handled by the HS
component. a) MUSIC, b) RANDOM-64, c) GAUSS-64. Top pairs of curves for
n = m = 4096, bottom pairs for n = m = 512

0.001 0.01 0.1 1 10

10

20

50

100

200

500

σ = 16

σ = 32

σ = 64

σ = 128

σ = 256

% matches

ti
m

e
[m

s
]

0.001 0.01 0.1 1 10

10

20

50

100

200

500

σ = 16

σ = 32

σ = 64

σ = 128

σ = 256

% matches

ti
m

e
[m

s
]

a) b)
Figure 2.5: LCTS, overall processing time of the hybrid algorithm with varying
threshold of the total percentage of matches handled by the HS component (trans-
positions ordered from the sparsest to the densest). n = m = 4096, σ = 16, . . . , 128,
64-bit implementation: a) RANDOM, b) GAUSS

alphabets the HS algorithm starts to win. It can be also seen that the
Gaussian data are much more sensitive to small changes of the thresholds
(in their low ranges), which is not surprising.

It occurs that the best split for the music data allots about 80% matches
(from the most frequent transpositions) to the BP algorithm, while the re-
maining 20% matches are handled by the HS variant. In other words (cf.
Fig. 2.3), less than 40% of the most frequent transpositions should be pro-
cessed by BP. Note also, again for the music data, that the BP component
is faster by about 25% (i.e., needs about 20% less time) than the HS com-
ponent, for w = 32, and even about twice, for w = 64, if applied exclusively.

74 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

Table 2.1: LCTS, MUSIC, 32-bit implementation

n = m BP time HS time Best time Hyb. time Best thr. Hyb. thr. BP trans BP match
[ms] [ms] [ms] [ms] [%] [%] [%] [%]

256 0.3157 0.5167 0.2686 0.2768 1.6928 1.3930 45.4 83.8
512 1.4366 1.7222 0.9210 0.9686 1.8621 1.5752 42.1 80.5
1024 5.5727 6.3598 3.0630 3.1441 1.6928 1.4759 40.2 81.5
2048 23.2568 25.5058 13.3131 13.5623 1.5389 1.4969 34.8 78.3
4096 91.7169 95.0223 44.9423 45.6610 1.3990 1.4930 34.7 80.9
8192 381.6627 381.3309 185.5993 188.4778 1.5389 1.5642 33.6 79.9

Table 2.2: LCTS, MUSIC, 64-bit implementation

n = m BP time HS time Best time Hyb. time Best thr. Hyb. thr. BP trans BP match
[ms] [ms] [ms] [ms] [%] [%] [%] [%]

256 0.1842 0.5183 0.1842 0.2151 0.0000 0.7371 61.9 92.4
512 0.6811 1.7288 0.5669 0.5868 0.8687 0.7022 61.2 93.1
1024 3.0936 6.3303 2.0560 2.1032 1.1562 0.8202 55.0 91.1
2048 12.2291 25.5285 8.3442 8.6279 0.8687 0.7895 52.1 90.1
4096 47.1900 95.0745 28.4840 29.0666 0.7897 0.7683 48.9 91.8
8192 193.8347 380.7648 112.5319 113.1798 0.8687 0.7952 43.7 91.2

Table 2.3: LCTS, RANDOM-128, 64-bit implementation

n = m BP time HS time Best time Hyb. time Best thr. Hyb. thr. BP trans BP match
[ms] [ms] [ms] [ms] [%] [%] [%] [%]

256 0.7996 1.4635 0.7677 0.7771 0.1890 0.1898 75.6 93.6
512 2.7441 4.5429 2.4480 2.4640 0.2287 0.2248 71.3 91.2
1024 11.8452 15.4458 9.6989 9.7430 0.3044 0.2938 62.3 85.3
2048 42.9331 56.6781 34.5518 34.7321 0.3044 0.2914 62.3 85.6
4096 164.4345 215.2981 130.7266 131.3415 0.3044 0.2933 62.3 85.3
8192 729.7012 877.4197 572.9071 576.5836 0.3349 0.3295 57.6 81.8

For the uniformly random data (σ = 64), those di�erences are even greater,
but drop rapidly with growing alphabet size (on the other hand, for σ smaller
than 64, the advantage of the BP algorithm is even more striking).

We also evaluated an �oracular� component selection (column Best time
in all tables), which sets the lower bound for any selecting heuristic. It
can be seen that our idea based on crossing lines is quite stable across all
experiments and the loss to the lower bound is usually within 2% of overall
time (the worst case is in Table 2.2, n = m = 256, where our time was by
over 6% longer than with using the oracle).

The detailed timings of the algorithms: HS, BP and our hybrid, are given
in the tables, for 32-bit and 64-bit implementations separately. In rows, the
problem size changes from n = m = 256 to n = m = 8192. The right

2.6. GLOBAL SIMILARITY MEASURES 75

Table 2.4: LCTS, GAUSS-128, 64-bit implementation

n = m BP time HS time Best time Hyb. time Best thr. Hyb. thr. BP trans BP match
[ms] [ms] [ms] [ms] [%] [%] [%] [%]

256 0.5463 1.1105 0.4193 0.4316 0.1420 0.2572 51.1 94.3
512 1.9991 3.7308 1.3030 1.3254 0.1890 0.2741 46.7 94.0
1024 9.2762 13.3282 5.0989 5.1376 0.3349 0.3455 40.3 92.3
2048 35.9229 50.6291 18.0331 18.1210 0.3349 0.3336 38.0 92.6
4096 144.2099 198.6377 67.3530 67.4932 0.3044 0.3349 36.1 92.7
8192 597.2110 778.5215 263.3859 263.5459 0.3684 0.3506 34.3 92.3

half of the columns requires a brief explanation. Best threshold speci�es the
minimum fraction of matches per transposition, for which the BP algorithm
starts to work faster than the HS algorithm (if used for this transposition).
Hybrid threshold conveys similar information; the di�erence is that here we
see the threshold selected by our component selection heuristic. Roughly,
the closer those two threshold values are, for a given problem instance, the
better the heuristic is expected to work.3

The next column, BP transpositions is the fraction of transpositions
handled by the BP component, using our selection heuristic. Finally, the
column BP match holds the fractions of matches in the transpositions for
which the BP algorithm is triggered.

The speedup factor of the hybrid algorithm over the better of the two
components (i.e., BP) on the music data varies from 1.36 (n = 256) to 1.97
(n = 8192) in the 32-bit implementations, and from 1.11 (n = 256) to 1.71
(n = 8192) in the 64-bit implementations, so it improves with growing n.
Note that we skip non-existent transpositions in the BP algorithm, which
boosts its performance on the music data very signi�cantly.

On uniformly random data, the situation is somewhat di�erent. For
small to moderate σ (up to 64) the bit-parallel algorithm is much faster
than the HS one (note the scale on Fig. 2.5), even in the 32-bit version
the di�erence is 4-fold in case of σ = 16 and n = 4096 (switching to 64
bits makes is almost 7-fold), but the picture changes for σ = 128 and σ =

3The presented thresholds are medians from individual experiments, but there is a
subtle di�erence between �best times� and �hybrid times�. The column Best time uses a
single threshold (the one for which the median time over 101 runs is minimized), while
for the column Hybrid time individual thresholds for each test run are used (and the
median times for runs with those possibly di�erent thresholds are presented). Although
insigni�cant in practice, this could, in theory, lead to surprising e�ects, e.g., a shorter
Hybrid time than Best time. The reason for which we chose this presentation methodology
was to make it compatible with Figs. 2.4 and 2.5, where a single �best threshold� had to
be used.

76 CHAPTER 2. ONLINE APPROXIMATE STRING MATCHING

256. Interestingly, for small alphabets the HS component beats the BP
component on some (few) transpositions, so the hybrid, with the threshold
selected properly, again appears better than both its components (but with
the speedup of about 10% only, at best). For a large enough alphabet
(σ = 256) the BP algorithm usually can win on no transposition, hence
the �optimal� hybrid degenerates into the HS component. The border case
is σ = 128 where HS takes the lead but its advantage over BP is quite
moderate; in that case the hybrid algorithm is faster than HS by 12�24%
(easy to guess, the speedups close to 24% are for the 32-bit implementations).

The HS algorithm does not change its speed when switched from 32 to
64 bits, while the improvement is obvious for the BP algorithm, and the
speedup factor varies from about 1.6 to 1.9. The stages of the algorithm
which do not gain from longer registers are the preprocessing and the �nal
counting of the set bits in vector V (cf. Alg. 13). The columns BP trans-
positions and BP match con�rm that after switching from the 32- to 64-bit
implementation, the bit-parallel component is selected more often.

2.7 Conclusions

Approximate string matching is an umbrella term encompassing a plethora
of matching models and respective applications. In this chapter, we pre-
sented only selected approximate matching problems, with applications in,
e.g., molecular biology, music information retrieval and natural language
processing. A broad class of approximate matching models, those involving
gaps between the pattern symbols, are the subject of the next chapter.

Our main contribution to this research area is a novel technique of nested
counters in bit-parallel algorithms, which we refer to as Matryoshka counters.
This idea easily enables to shave o� the log m factor from the complexity of
the classic Shift-Add algorithm for the k-mismatches problem. We have also
successfully applied Matryoshka counters for many other problems (which
was often not that simple).

Other results of ours include an average-optimal Shift-Add variant for
short patterns (based on our technique presented in Chapter 1), word-level
parallelization technique for FFT-based algorithms for k-mismatches and
Hamming distance and a simple, yet e�cient, hybrid algorithm for the
longest transposition-invariant common subsequence problem. For the same
problem, we collaborated in the design of the best known worst-case opti-
mized algorithm.

Chapter 3

Matching with gaps

One of seemingly underexplored problems with applications in music in-
formation retrieval (MIR) and molecular biology (MB) is (δ, α)-matching
[CIM+02] and its variations. In this problem, the pattern p0p1 . . . pm−1 is
allowed to match a substring of the text t0t1 . . . tn−1 with α-limited gaps,
and the respective pairs of matching characters may be di�erent, only if their
numerical values do not di�er by more than δ. Translating this model into a
music (melody seeking) application, we can allow for small distortions of the
original melody because the (presumably unskilled) human user may sing or
whistle the melody imprecisely. The gaps, on the other hand, allow to skip
over ornamenting notes (e.g., arpeggios), which appear especially in classical
music. Other assumptions here, that is, monophonic melody and using pitch
values only (without note durations), are reasonable in most practical cases.
Sometimes, we also want to bound the total sum of distortions over individ-
ual characters (notes), hence an extra condition, γ, can also be imposed. In
biology, somewhat relaxed version of the α-matching problem is important
for protein matching, especially together with allowing for matching classes
of characters. Fortunately, in all the new algorithms we are going to present
in this chapter, δ-matching can be straightforwardly changed into matching
classes of characters, without any penalty in the complexities if the size of
the character class is of the order of δ.

We proposed a number of algorithms for (δ, α) and (δ, γ, α)-matching
problems, motivated by music information retrieval (MIR) applications. Our
algorithms are competitive either in theory, or in practice, or both. For those
problems, complex interplays between the preprocessing times and search
times, and also average time and worst-case time complexities, have been
spotted and analyzed. Our algorithms are based on bit-parallelism, sparse

77

78 CHAPTER 3. MATCHING WITH GAPS

dynamic programming with cut-o�, and automata.
The outline of this chapter is as follows. In the beginning, we introduce

formally the (δ, α) and (δ, γ, α)-matching problems. Section 3.2 brie�y sur-
veys previous results for those problems. Section 3.3 presents dynamic pro-
gramming solutions, basic variants with quadratic behavior in every case,
and cut-o� variant optimized for the worst case. The next two sections
introduce two sparse dynamic programming algorithms, a row-wise and a
column-wise one, with di�erent interplay between the preprocessing and
search complexity. We consider many variations and improvements for those
algorithms, e.g., intented to speed up the preprocessing phase. One of those
variations is a row-wise SDP algorithm oriented for large α cases. A sim-
ple, but surprisingly e�cient in practice, o�spring of the SDP algorithms
is presented in Sects. 3.6 and 3.7. We even show its variant, taking inspi-
ration from the BMH algorithm, with sublinear average time. The next
section deals with bit-parallelism. Although the BP algorithms we propose
for the (δ, α) and (δ, γ, α)-matching problems are intrinsically similar, there
are some extra di�culties concerning the (δ, γ, α) problem. Interestingly,
our BP approach appears to be a surprisingly simple solution to an old
problem, motivated in computational biology, of matching when negative
gaps are allowed. Section 3.10 presents a novel bit-parallel NFA simulation
for the (δ, α)-matching problem, which is inspired by the previous algorithm
of this kind [NR03, CCF05b], but needs fewer bits, hence is more e�cient on
long patterns. Section 3.11 discusses other related problems, in particular
about the translation from the (δ, γ, α) model (developed for MIR applica-
tions) to matching with gaps and character classes, with up to k mismatches,
which is more relevant for MB. The last theory section contains non-trivial
adaptations of several presented earlier algorithms for (δ, α)-matching for
the scenario with transposition invariance. The next two sections contain
results of our experiments, for (δ, α) and (δ, γ, α)-matching, respectively.
The last section concludes.

The arsenal of novel algorithms and techniques presented in this chapter
is quite spacious, and it is not easy to explain all the nuances and particular
niches of application for individual algorithms. Let us try, however, to point
out the main achievements.

1. We proposed a number of sparse dynamic programming algorithms for
the (δ, α) and (δ, γ, α)-matching problems, with di�erent dependencies
between the preprocessing and search times, both for the worst and
the average case.

2. We presented an O(dn/wem) search time bit-parallel algorithm for

3.1. PRELIMINARIES 79

(δ, α)-matching and a similar variant with O(dn log(γ)/wem) search
time for (δ, γ, α)-matching. Those complexities assume that w =
Θ(log n). For an unrestricted machine word size, the times should
be multiplied by log α. More practical implementations of those al-
gorithms are also equipped with the so-called cut-o� technique which
lets stop computations for those areas of the dynamic programming
matrix in which no pattern pre�xes can be prolonged. We use the
cut-o� idea also for most other algorithms of ours.

3. We proposed several worst-case oriented preprocessing techniques for
the bit-parallel algorithms. One of them works in merely O(n) time
and can be used for the (δ, γ, α) problem.

4. We gave an O(n + nm log(α|M|/(nm))/α) worst-case time algorithm
for (δ, α)-matching, suitable for the case of large α. M denotes the
set of matches in the dynamic programming matrix for this problem.

5. Almost all our algorithms can be easily transformed to work in a pro-
tein search application, where gaps between any pair of pattern char-
acters can be of di�erent width, and the δ condition is replaced with
a more general notion of a character class. Moreover, most of our
sparse dynamic programming and bit-parallel techniques work even
for negative gaps, a problem variant which seemed hard earlier.

6. We showed that the O(dmα/we)-bit automaton of Navarro and Raf-
�not [NR03] can be represented more compactly, in O(dm log(α)/we)
bits, which preserves the linear time complexity for longer patterns
than in the original solution.

7. Experiments show that some of our algorithms are the fastest in prac-
tice, for real data from music information retrieval applications, or
used to be the fastest at their publication time.

Our results were presented, chronologically, in [FG05a, FG06c, FG06b,
FG08b] ((δ, α) and related problems), and in [FG06a, FG08a] ((δ, γ, α) and
related problems).

3.1 Preliminaries

Let the pattern P = p0p1p2 . . . pm−1 and the text T = t0t1t2 . . . tn−1 be
numerical strings, where pi, tj ∈ Σ for Σ = {0, 1, . . . , σ − 1}. The numbers
of distinct symbols in the pattern and in the text are denoted by σp and σt,
respectively. Moreover, we use σp∩t to denote the number of characters that
occur both in P and T simultaneously. Note that σp∩t ≤ σp, σt,m.

In δ-approximate string matching the symbols a, b ∈ Σ match, denoted
by a =δ b, i� |a − b| ≤ δ. Pattern P (δ, α)-matches the text substring

80 CHAPTER 3. MATCHING WITH GAPS

tj0tj1tj2 . . . tjm−1 , if pi =δ tji for i ∈ {0, . . . , m − 1}, where 0 < ji+1 − ji ≤
α + 1. If string A (δ, α)-matches string B, we write A =α

δ B.
We sometimes need the symbol M to denote the set of all matches in

the dynamic programming matrix. More precisely,M = {(i, j) | pi =δ tj} is
the set of indexes of the δ-matching character pairs in P and T . Obviously,
|M| = O(nm).

Pattern P (δ, γ, α)-matches the text substring tj0tj1tj2 . . . tjm−1 , if pi =δ

tji for i ∈ {0, . . . ,m − 1}, where 0 < ji+1 − ji ≤ α + 1, and
∑m−1

j=0 |pi −
tji | ≤ γ. To say that string A (δ, γ, α)-matches string B, we sometimes
write A =α

δ,γ B.
In the (δ, γ, α)-matching problem, the pattern p0p1 . . . pm−1 is allowed to

match a substring of the text t0t1 . . . tn−1 with α-limited gaps, the respec-
tive pairs of matching characters' numerical values may di�er only by δ at
most, and the total sum of di�erences is limited to γ. In music information
retrieval, a standard application of this model is again to �softly� match a
melody hummed or whistled by a human user, against a music database,
with tolerance for false notes and possible additional (ornamenting) notes
in a referred pitch sequence in the database. The extra parameter, γ, limits
the sum of allowed pitch distortions.

In all our average-case analyses we assume uniformly random distribution
of characters in T and P , and constant α and δ/σ, unless otherwise stated.
Moreover, we often write δ/σ to be terse, but the reader should understand
that we mean (2δ + 1)/σ, which is the upper bound for the probability that
two randomly picked characters match.

3.2 Previous work

The �rst algorithm for the (δ, α)-matching problem [CIM+02] is based on
dynamic programming, and runs in O(nm) time. This algorithm was later
reformulated [CCF05a] to allow to �nd all pattern occurrences, instead of
only the positions where the occurrence ends. This needs more time, how-
ever. The algorithm in [CCF05b] improves the average case of the one in
[CCF05a] to O(n), assuming constant α. More general forms of gaps were
considered in [PW05], retaining the O(nm) time bounds.

In molecular biology, in particular for searching patterns in protein se-
quences, the problem variant of α-matching with speci�ed classes of charac-
ters is applied. In that case, the gap limits for each pattern character may
be of di�erent length, in particular, it is assumed that for many characters it
is zero. For this particular problem, there exists an e�cient bit-parallel non-

3.3. DYNAMIC PROGRAMMING 81

deterministic automaton solution [NR03]. This algorithm can be trivially
generalized to handle (δ, α)-matching [CCF05b], but the time complexity
becomes O(ndαm/we) in the worst case, where w is the length of the ma-
chine word. For small α the algorithm can be made to run in O(n) time on
average. Sparse dynamic programming can be used to solve the problem in
O(n+|M|min{log(δ+2), log log m}) time, whereM = {(i, j) | |pi−tj | ≤ δ},
and |M| ≤ nm [Mäk03b]. This can be extended for the harder problem vari-
ant where transposition invariance and character insertions, substitutions or
mismatches are allowed together with (δ, α)-matching [MNU05].

Recently, after our works on (δ, α)-matching, Cantone et al. [CCF08]
showed four new algorithms for this problem, one of which, (δ, α)-tuned-
sequential-sampling HBP, wins in their tests over the fastest of our algo-
rithms, Simple, achieving up to 1.5 greater speed. Their algorithm is a
column-wise bit-parallel one, and works in O(nmdα/we) worst-case time
and in O(n) time on average.

The (δ, γ, α) problem has been rarely addressed earlier in the literature;
we are aware of only one algorithm [CIM+02], based on dynamic program-
ming and running in O(nm) time. Notice that a brute-force approach to
this problem has worse time complexity, namely O(nmα).

We note yet that many works attempted to present relevant transla-
tions from musical similarity to formal matching models, and the number
of aspects to consider when dealing with music data, both monophonic and
polyphonic, can be really large. Those considerations go out of the scope of
this work and a curious reader may be referred to e.g. [CI04] for an intro-
duction.

3.3 Dynamic programming

The dynamic programming solution to (δ, α)-matching is based on the fol-
lowing recurrence [CIM+02, CCF05a]:

Di,j =

j, tj =δ pi and (i = 0 or (i, j ≥ 1 and Di−1,j−1 ≥ 0)),
Di,j−1, tj 6=δ pi and j > 0 and j −Di,j−1 < α + 1,
−1, otherwise.

(3.1)
In other words, if Di,j = j, then the pattern pre�x p0 . . . pi has an occurrence
ending at text character tj , i.e. pi =δ tj and the pre�x p0 . . . pi−1 occurs at
position Di−1,j−1, and the gap between this position and the position j is at
most α. If pi 6=δ tj , then we try to extend the match by extending the gap,
i.e. we set Di,j = Di,j−1 if the gap does not become too large. Otherwise,

82 CHAPTER 3. MATCHING WITH GAPS

Alg. 14 DA-dp(T, n, P, m, δ, α).
1 for i ← 0 to m− 1 do Di,0 ← −1
2 if |p0 − t0| ≤ δ then D0,0 ← 0
3 for i ← 0 to m− 1 do
4 for j ← 1 to n− 1 do
5 if |pi − tj | ≤ δ and (i = 0 orDi−1,j−1 ≥ 0) then
6 Di,j ← j
7 if i = m− 1 then report match
8 else if Di,j−1 ≥ j − α then Di,j ← Di,j−1

9 else Di,j ← −1

we set Di,j = −1. The algorithm then �lls the table D0...m−1,0...n−1, and
reports an occurrence ending at position j whenever Dm−1,j = j. This is
simple to implement, and the algorithm runs in O(nm) time using O(nm)
space. Alg. 14 gives the pseudocode.

It should be stressed that both cited algorithms from the literature have
quadratic time complexity even in the best case. Interestingly, it is possible
to improve the average-case complexity of the DP approach to O(n) while
preserving the O(nm) time in the worst case.

As already mentioned in [CIM+02], the space requirement of Alg. 14 can
be made O(n) by noticing that the computation of the current row of D
depends only on the previous row. However, it is also true that the com-
putation of the current column of D depends only on the previous column.
This can be used to make the space complexity just O(m), by computing
the matrix column-wise, instead of row-wise, and storing only the current
and previous columns.

Yet the authors of the cited work [CIM+02] noted that the average time
could be made just O(n), but they did not explain explicitly how. The �rst
explicit description of this idea was given by Cantone et al. in [CCF05b].
Below we present our solution [FG05a], which is similar, but di�erent in
some details. Moreover, in our analysis the assumption of constant-size
gaps is not needed, as opposed to [CCF05b].

The algorithm is based on the following observation: if Di...m−1,j = −1,
for some i, j, then Di+1...m−1,j+1 = −1. This is because there is no way the
recurrence can introduce any other value for those matrix cells. In other
words, if p0 . . . pi does not (δ, α)-match th . . . tj−k for any k = 0 . . . α, then
the match at the position j + 1 cannot be extended to p0 . . . pi+1.

This can be utilized by keeping track of the highest row number top of
the current column j such that Dtop,j 6= −1, and computing the next column

3.3. DYNAMIC PROGRAMMING 83

Alg. 15 DA-dpco(T, n, P,m, δ, α).
1 for i ← 0 to m− 1 do D′

i ← −1
2 if |p0 − t0| ≤ δ then D′

0 ← 0
3 top ← m− 1
4 for j ← 1 to n− 1 do
5 for i ← 0 to top do
6 if |pi − tj | ≤ δ and (i = 0 orD′

i−1 ≥ 0) then
7 Di ← j
8 if i = m− 1 then report match
9 else if D′

i ≥ j − α then Di ← D′
i

10 else Di ← −1
11 while top ≥ 0 and Dtop = −1 do top ← top− 1
12 if top < m− 1 then top ← top + 1
13 Dt ← D; D ← D′; D′ ← Dt

only up to row top + 1. More formally, we de�ne
topj = argmaxi{Di,j−1 = −1 and Di−1,j−1 6= −1}, (3.2)

and at text position j compute the column j only up to row topj . We call
this a cut-o� trick. This technique was �rst used (in a di�erent context) by
Ukkonen [Ukk85a].

Alg. 15 gives the pseudocode to implement these two tricks. The space
complexity is clearly O(m), and we show that the average-case time com-
plexity is O(n). First consider the time taken for keeping track of the last
active row top. For each text position top can increase only by at most 1,
giving a total of O(n) increments. While top can decrease by O(m) for a
processed column, which costs O(m) time, the total number of decrements
cannot be larger than the number of increments plus m−1, so the amortized
cost of decrements is at most O(n) as well. In total top can be maintained
in O(n) worst-case time during the whole computation.

We now show that the average value of top is O(1), which gives a total
O(n) average time. The average value of top is the same as the average
length i+1 of the longest pre�x p0 . . . pi that matches at some text position.
The probability that a =δ b for some a, b ∈ Σ is O(δ/σ) assuming uniform
Bernoulli model of probability. We assume that δ/σ is constant here. Hence
the probability that p0 . . . pi (δ, α)-matches th . . . tj is

Pr(i) = O((1− (1− δ/σ)α+1)i(δ/σ)), (3.3)
and the expected value of top is

m−1∑

i=0

i Pr(i) = O

(∞∑

i=0

i Pr(i)

)
= O

(
δ

σ(1− δ/σ)α+1

)
, (3.4)

84 CHAPTER 3. MATCHING WITH GAPS

as the sum is a geometric series, which does not depend on m, and is O(1)
for constant α. A similar analysis can be found from [CCF05b] for the
Sequential Sampling algorithm.

Now, we are going to discuss the respective DP algorithms for (δ, γ, α)-
matching. Although the basic ideas are similar, this is a harder problem than
the previous one. The recurrence for (δ, γ, α)-matching is the following:

Di,j =
{

Di−1,j′ + |pi − tj |, pi =δ tj ∧ 0 < j − j′ ≤ α + 1, minDi−1,j′ ≤ γ
γ + 1, otherwise.

(3.5)
If Dm−1,j ≤ γ, then P =α

δ,γ th . . . tj for some h. The matrix D is simple
to compute in O(αnm) time. As we are only interested in the matching
text positions, the O(nm) space complexity can be easily improved. Using
row-wise computation only the current and the previous rows need to be
in memory, and hence the space complexity is just O(n). For column-wise
computation the space complexity is O(αm) as up to α+1 columns have to
be stored.

As shown in [CIM+02] the time complexity can be improved to O(nm)
using min-queue data structures [GT86]. However, in practical MIR ap-
plications α is usually so small that the simple brute-force evaluation is
faster than using sophisticated data structures that have large (constant)
overhead. From a practical point, a more interesting solution is (again) the
simple cut-o� trick that improves the average case.

For the current problem, the cut-o� idea is based on the following ob-
servation: if Di...m−1,j−α...j > γ, for some i, j, then Di+1...m−1,j+1 > γ. This
is because there is no way the recurrence can introduce any other value
for those matrix cells. In other words, if p0 . . . pi does not (δ, γ, α)-match
th . . . tj−k for any k = 0 . . . α, then the match at the position j +1 cannot be
extended to p0 . . . pi+1. This can be utilized by keeping track of the highest
row number top of the current column j such that Dtop+1...m−1,j−α...j > γ,
and computing the next column only up to row top + 1. For this sake we
maintain an array C so that C[i] gives the largest j such that p0 . . . pi =α

δ,γ

th . . . tj . This is easy to do in O(1) time per accessed matrix cell. Alg. 16
shows the complete pseudocode.

Now consider the average time of this algorithm. Computing a sin-
gle cell Di,j costs O(α) in the worst case. However, this happens only if
p0 . . . pi−1 =α

δ,γ th . . . tj′ and pi =δ tj for some j′ ≥ j − α − 1, and other-
wise the cost is just O(1). Therefore on average each cell is computed in
O(αδ/σ) time. Maintaining top costs only O(n) time in total, since it can
be incremented only by one per text character, and the number of decre-

3.3. DYNAMIC PROGRAMMING 85

Alg. 16 DGA-dpco(T, n, P, m, δ, γ, α).
1 for j ← 0 to α + 1 do for i ← 0 to m− 1 do Di,j ← γ + 1
2 for i ← 0 to m− 1 do C[i] ← −α− 1
3 D0,0 ← |t0 − p0|
4 if D0,0 > δ then D0,0 ← γ + 1
5 if D0,0 ≤ γ then C[0] ← 0
6 top ← m− 1
7 for j ← 1 to n− 1 do
8 C′ ← C[0]
9 k ← j % (α + 2)
10 D0,k ← |tj − p0|
11 if D0,k > δ then D0,k ← γ + 1
12 if D0,k ≤ γ then C[0] ← j
13 for i ← 1 to top do
14 d ← |tj − pi|
15 min ← γ + 1
16 if d ≤ δ and j − C′ ≤ α + 1 then
17 k′ ← (j − 1) % (α + 2)
18 min ← Di−1,k′

19 for h ← max{0, j − α− 1} to j − 2 do
20 k′ ← h % (α + 2)
21 if Di−1,k′ < min then min ← Di−1,k′

22 Di,k ← min + d
23 C′ ← C[i]
24 if Di,k ≤ γ then
25 C[i] ← j
26 if i = m− 1 then report match
27 while top ≥ 0 and j − C[top] > α + 1 do top ← top− 1
28 if top < m− 1 then top ← top + 1

ments cannot be larger than the number of increments. The average time
of this algorithm also depends on the average value of top, i.e. the total
time is O(n avg(top) αδ/σ). For γ = ∞ it can be shown that avg(top) =
O

(
δ

σ(1−δ/σ)α+1

)
[CCF05b]. This is O(αδ/σ) for δ/σ < 1−α−1/(α+1), so the

average time is at most O(n(αδ/σ)2). We have neglected the e�ect of γ, but
by forcing the γ condition the time can only improve, hence our analysis is
pessimistic. In the worst case the time is O(αnm), but this can be improved
to O(nm) as in [CIM+02], the only di�erence being that we need m queues,
since we are computing column-wise (as opposed to row-wise in [CIM+02]).

Note that the average-case analyses may have little practical value for
music, which is far from random and most of its pitch alphabet is hardly ever
used. Hence, practical evaluation of these algorithms, for both considered
problems (see Sect. 3.13) will make more sense.

86 CHAPTER 3. MATCHING WITH GAPS

3.4 Row-wise sparse dynamic programming

The algorithm for (δ, α)-matching that we now present can be seen as a row-
wise variant of the sparse dynamic programming algorithm of the algorithm
in [MNU05, Sect. 5.4]. We show how to improve its average-case running
time. Our variant can also be easily extended to handle more general gaps,
see Sect. 3.11.

3.4.1 E�cient worst case
From the recurrence of D it is clear that the interesting computation happens
when tj =δ pi, and otherwise the algorithm just copies previous entries of
the matrix or �lls some of the cells with a constant.

Further we refer to M, the set of indexes for all δ-matching pairs of
characters from P and T . For every (i, j) ∈ M we compute a value di,j .
For the pair (i, j) where di,j is de�ned, it corresponds to the value of Di,j .
If (i, j) 6∈ M, then di,j is not de�ned. Note that dm−1,j is always de�ned if
P occurs at th...j for some h < j. The new recurrence is

di,j = j | (i− 1, j′) ∈M and 0 < j − j′ ≤ α + 1 and di−1,j′ 6= −1,

and −1 otherwise. Computing the d values is easy once M is computed.
As we have an integer alphabet, we can use table look-ups to compute
M e�ciently. Instead of computing M, we compute lists L[pi], where
L[pi] = {j | pi =δ tj}. These are obtained by scanning the text linearly,
and inserting j into each list L[pi] such that pi δ-matches tj . Clearly, there
are at most O(δ) and in average only O(δσp/σ) symbols pi that δ-match tj .
Therefore this can be obtained in O(δn) worst-case time, and the average-
case complexity is O(n(δσp/σ + 1)). Note that |M| is O(nm) in the worst
case, but the total length of all the lists is at most O(min{σp, δ}n), hence L
is a compact representation ofM. The indexes in L[pi] will be in increasing
order.

Consider a row-wise computation of d. The values of the �rst row d0,j

correspond one to one to the list L[p0], that is, the text positions j where
p0 =δ tj . The subsequent rows di correspond to L[pi], with the additional
constraint that j − j′ ≤ α + 1, where j′ ∈ L[pi−1] and di−1,j′ 6= −1. Since
the values in L[pi] and di−1 are in increasing order, we can compute the
current row i by traversing the lists L[pi] and di−1 simultaneously, trying
to enforce the condition that L[pi][h]− di−1,k ≤ α + 1 for some h, k. If the
condition cannot be satis�ed for some h, we store −1 to di,h, otherwise we
store the text position L[pi][h]. The algorithm traverses L and M linearly,

3.4. ROW-WISE SPARSE DYNAMIC PROGRAMMING 87

and hence runs in O(n + |M|) worst-case time. We now consider improving
the average-case time of this algorithm.

3.4.2 E�cient average case
The basic sparse algorithm still does some redundant computation. To com-
pute the values di,j for the current row i, it laboriously scans through the
list L[pi], for all positions, even for the positions close to where p0 . . . pi−1

did not match. In general, the number of text positions with matching pat-
tern pre�xes decreases exponentially on average when the pre�x length i
increases. Yet, the list length |L[pi]| will stay approximately the same. The
goal is therefore to improve the algorithm so that its running time per row
depends on the number of matching pattern pre�xes on that row, rather
than on the number of δ-matches for the current character on that row.

The modi�cations are simple: (1) the values di,j = −1 are not maintained
explicitly, they are just not stored since they do not a�ect the computation;
(2) the list L[pi] is not traversed sequentially, position by position, but binary
search is used to �nd the next value that may satisfy the condition that
L[pi][h]− di−1,k ≤ α + 1 for some h, k.

Consider now the average search time of this algorithm. The average
length of each list L[pi] is O(nδ/σ). Hence this is the time needed to compute
the �rst row of the matrix, i.e. we just copy the values in L[p0] to be the �rst
row of d. For the subsequent rows we execute one binary search over L[pi]
per each stored value in row i of the matrix. Hence in general, computing
the row i of the matrix takes time O(|di−1| log(nδ/σ)), where |di| denotes the
number of stored values in row i. For i > 0 this decreases exponentially as
|di| = O(n(δ/σ)×ρi), where ρ = 1−(1−δ/σ)α+1 < 1 is the probability that
a pattern symbol δ-matches in a text window of length α symbols. Summing
up the resulting geometric series over all rows we obtain O(n δ

σ(1−δ/σ)α+1),
which is O(nαδ/σ) for δ/σ < 1−α−1/(α+1). In particular this is O(n) for α =
O(σ/δ). Hence the average search time is O(n+nαδ/σ log(nδ/σ)). However,
the worst-case search time is also increased to O(n + |M| log(|M|/m)). We
note that this can be improved to O(n + |M| log log((nm)/|M|)) by using
e�cient priority queues [Joh82] instead of binary search.

3.4.3 Faster preprocessing
The O(δn) (worst-case) preprocessing time can dominate the average-case
search time in some cases. Note however, that the preprocessing time can
never exceed O(n + |M|). We now present two methods to improve the

88 CHAPTER 3. MATCHING WITH GAPS

preprocessing time. The �rst one reduces the worst-case preprocessing cost
to O(

√
δn), and improves its average case as well. The second method

achieves O(n) preprocessing time, but the worst case search time is slightly
increased.

O(
√

δn) time preprocessing
The basic idea is to partition the alphabet into σ/

√
δ disjoint intervals

Ih, h = 0 . . . σ/
√

δ− 1 of size
√

δ each (w.l.o.g. we assume that δ is a square
number and

√
δ divides σ). Then, for each alphabet symbol s, its respec-

tive [s − δ, s + δ] interval wholly covers Θ(
√

δ) intervals Ih, and also can
partially cover at most two Ih intervals. Two kinds of lists are computed
in the preprocessing, Lb (for �boundary� cases) and Lc (for �core�). For
each character tj from text T , at most 2(

√
δ − 1) lists Lb[pi] are extended

with one entry, the text position j, and those lists correspond to the pattern
alphabet symbols from the partially covered intervals Ih. For example, if
Σ = {0, . . . , 29},

√
δ = 3, and tj = 10, then the [tj − δ, tj + δ] interval is

[1, 19], and j is appended to the lists Lb[1], Lb[2], Lb[18], Lb[19], assuming
that P contains all the symbols 1, 2, 18 and 19 (if not, the respective lists
are not built at all). Similarly, each character tj also causes to append j
to O(

√
δ) lists Lc[pi/

√
δ], those that correspond to the Ih intervals wholly

covered by [tj − δ, tj + δ].
Fig. 3.1 illustrates. The δ-interval for tj = 10 spans over the dark-

shaded and light-shaded cells. The light-shaded symbols (1, 2, 18, 19) are
the �boundary� cases corresponding to the two partially covered intervals,
and j is appended to the corresponding Lb lists. The dark-shaded intervals
(1, 2, 3, 4, 5) are the fully covered �core� cases, and j is appended to the
corresponding Lc lists.

More formally (and still assuming for simplicity that δ is a square num-
ber) text position j is appended to the lists Lb[pi] for

pi ∈ {tj − δ . . .
⌈
(tj − δ)/

√
δ
⌉√

δ − 1,
⌊
(tj + δ + 1)/

√
δ
⌋√

δ . . . tj + δ}.

Likewise, j is appended to the lists Lc[pi/
√

δ] for

pi/
√

δ ∈ {
⌈
(tj − δ)/

√
δ
⌉

. . .
⌊
(tj + δ + 1)/

√
δ
⌋
− 1}.

It is easy to see that the preprocessing needs O(
√

δn) time in the worst case
and O(n

√
δσp/σ) time on average.

The search is again based on a binary search routine, but in this variant
we binary search two lists: Lb[pi] and Lc[pi/

√
δ], as the δ-matches to pi may

3.4. ROW-WISE SPARSE DYNAMIC PROGRAMMING 89

partially covered intervals
wholly covered intervals

0

√
δ = 3

tj = 10 σ − 1
I0 I6I3

|Σ| = 30

Figure 3.1: Row-wise SPD for (δ, α)-matching, O(
√

δn) time preprocessing

be stored either at some Lb, or at some Lc list. This increases both the
average and worst-case search cost only by a constant factor.

We can generalize this idea and have a preprocessing/search tradeo�.
Namely, we may have k levels, turning the preprocessing cost into O(kδ1/kn),
for the price of a multiplicative factor k in the search. For k = log δ the
preprocessing cost becomes O(n log δ), and both the average and worst-case
search times are multiplied by log δ as well.

O(n) time preprocessing

We partition the alphabet into dσ/δe disjoint intervals of width δ. With
each interval a list of character occurrences will be associated. Namely, each
list L[i], i = 0 . . . dσ/δe − 1, corresponds to the characters iδ . . . min{(i +
1)δ − 1, σ − 1}. During the scan over the text in the preprocessing phase,
we append each index j to up to three lists: L[k] for such k that kδ ≤ tj ≤
(k + 1)δ − 1, L[k − 1] (if k − 1 ≥ 0), and L[k + 1] (if k + 1 ≤ dσ/δe − 1).
Note that no character from the range [tj − δ . . . tj + δ] can appear out of
the union of the three corresponding intervals. Such preprocessing clearly
needs O(n) space and time in the worst case.

Now the search algorithm runs the binary search over the list L[k] for
such k that kδ ≤ pi ≤ (k + 1)δ − 1, as any j such that tj =δ pi must
have been stored at L[k]. Still, the problem is there can be other text po-
sitions stored on L[k] too, as the only thing we can deduce is that for any
j in the list L[k], tj is (2δ − 1)-match to pi. To overcome this problem,
we have to verify if tj is a real δ-match. If tj 6=δ pi, we read the next
value from L[k] and continue analogously. After at most α + 1 read in-
dexes from L[k] we either have found a δ-match prolonging the matching
pre�x, or we have fallen o� the (α + 1)-sized window. As a result, the
worst-case time complexity is O(n + |M|(log n + α)). The average time

90 CHAPTER 3. MATCHING WITH GAPS

Alg. 17 DA-sdp-rows(T, n, P, m, δ, α).
1 for j ← 0 to n− 1 do
2 for c ← max{0, btj/δc − 1} to min{b(σ − 1)/δc, btj/δc+ 1} do
3 L[c] ← L[c] ∪ {j}
4 for i ← 0 to |L[p0]| − 1 do
5 j ← L[p0][i]
6 if |tj − p0| ≤ δ then D′

i ← j
7 h ← |L[p0]|
8 for i ← 1 to m− 1 do
9 c ← pi; pl ← h; k ← 0; h ← 0; u ← 0
10 while u < |L[c]| and k < pl do
11 j ← L[c][u]
12 do j′ ← D′

k

13 if j − j′ > α + 1 and k < pl then k ← k + 1
14 while j − j′ > α + 1 and k < pl
15 if j′ < j and k < pl and |tj − c| ≤ δ then
16 Dh ← j; h ← h + 1
17 if i = m− 1 then report match
18 if k < pl then u ← min{v | D′

k < L[c][v], v > u}
19 swap(D, Dt)

in this variant becomes O(n + nαδ/σ log n). Alg. 17 shows the complete
pseudocode.

3.4.4 Improved algorithm for large α

In this section we present a variant of the row-wise SDP algorithm, partic-
ularly suited to problem instances with large α.

In the preprocessing, we again compute lists L[pi] = {j | tj =δ pi}. But
now we also store 2bn/(α + 1)c pointers to each list. In each list, for each
j = k(α+1) where k ∈ 0 . . . n/(α+1)−1, there are two pointers, showing the
leftmost and the rightmost item with the value from the interval [j, j+α+1].
These pointers are kept in two 2-dimensional arrays, named L and R. More
formally, the elements of L and R are de�ned in the following way:

L[pi, k] = min{j | j ∈ L[pi] and j ∈ [k(α + 1) . . . (k + 1)(α + 1)]},
R[pi, k] = max{j | j ∈ L[pi] and j ∈ [k(α + 1) . . . (k + 1)(α + 1)]},

assuming the minimum and the maximum is seeked over a non-empty slice
of a list L[pi]. If this is not the case, the respective pointers are set to null. In
total, the extra preprocessing cost is O(δn+σpn/α) in time, and O(σpn/α)
space, in the worst case.

The search is basically pre�x prolongation. A speci�c trait of the algo-
rithm is that during the search we are not interested in �nding all matching

3.4. ROW-WISE SPARSE DYNAMIC PROGRAMMING 91

pre�xes: what is enough are (at most) two pre�xes per an (α+1)-sized chunk
of each row (except for the last row, where we perform an extra scan, to be
described later). The end positions of those pre�xes are maintained in two
auxiliary arrays, CL and CR, of size bn/(α + 1)c each. They are initialized
with the exact copy of the rows L[p0] and R[p0], respectively.

Now we assume the matrix row i we are in is at least 1. W.l.o.g. we also
assume that we are in the column at least α + 1. For each k ∈ 1 . . . n/(α +
1) − 1 we read L[pi, k] and R[pi−1, k − 1], and if both are non-null and
L[pi, k] − R[pi−1, k − 1] is at most α + 1, then we have found a relevant
pre�x, which we write to CL. If not, we check if L[pi, k] − L[pi−1, k] > 0
(note that this di�erence cannot be greater than α + 1, so testing for a
positive di�erence of non-null values is all we need). A�rmative answer
again corresponds to �nding a relevant pre�x (and requires updating CL[k]),
but a negative one means that we have to look for a pre�x prolongation
somewhere further in the current chunk. In such case, we perform a binary
search over the fragment of the list L[pi] with the boundaries kept in the
pointers L[pi, k] and R[pi, k], to �nd the smallest value being greater than
L[pi−1, k]. The interval has as most α + 1 items, so the binary search cost
is O(log α). If this results in a failure (which happens only if the considered
interval is empty), it means that we do not have a pre�x ended in the current
chunk, and CL[k] should be updated with a null value.

Analogously we proceed at the right boundary of each chunk. The in-
variant for the procedure is that after processing a row i, all the end po-
sitions of p0 . . . pi in the text chunk tk(α+1) . . . t(k+1)(α+1) are exactly those
CL[k] ≤ j ≤ CR[k] for whose tj δ-matches pi, assuming non-null values of
CL[k] and CR[k]. If either CL[k] or CR[k] is null, there are no pre�xes ending
in the given text chunk.

As mentioned, the last row requires an extra scan, to �nd all the δ-
matches between the positions in CL[k] and CR[k], for all k ∈ 0 . . . n/(α +
1)−1. Note that it is possible that CL[k] = CR[k] or CR[k] = CL[k +1], so we
must be careful not to count duplicates more than once. This stage needs
O(n) time, i.e. is always dominated by the preprocessing time.

The overall search complexity can be bounded by O(n + nm log(α)/α),
but actually we can bound it better: with O(n + nm log(α|M|/(nm))/α).
Indeed, a single chunk may have up to α + 1 items over which we binary
search, but in total there are only |M| matches in the matrix, which can be
much less than nm. This means that on average there are O(α|M|/(nm))
items in a chunk, and equal number of matches in chunks leads also to the
worst overall case, which is trivially implied from the convexity of the log
function.

92 CHAPTER 3. MATCHING WITH GAPS

3.5 Column-wise sparse dynamic programming

In this section we present a column-wise variant for (δ, α)-matching. This
algorithm runs in O(n + nαδ/σ) and O(n + min(|M|α, nm)) average and
worst-case time, respectively.

The algorithm processes the dynamic programming matrix column-wise.
Let us de�ne last pre�x occurrence D as

Di,j =
{

j′, max j′ ≤ j | p0 . . . pi =α
δ th . . . tj′ ,

−α− 1, otherwise. (3.6)

Note that D0,j = j if p0 =δ tj . Note also that Di,j is just an alternative
de�nition of Di,j (Eq. (3.5)). The pattern matching task is then to report
every j such that Dm−1,j = j. As seen, this is easy to compute in O(nm)
time. In order to do better, we maintain a list of window pre�x occurrences
Wj that contains for the current column j all the rows i such that j−Di,j ≤ α
where i ∈ Wj .

Assume now that we have computed D and W up to column j − 1, and
want to compute D and W for the current column j. The invariant is that
i ∈ Wj−1 i� j−Di,j−1 ≤ α+1. In other words, if i ∈ Wj−1 and j′ = Di,j−1,
then p0 . . . pi =α

δ th . . . tj′ for some h. Therefore, if tj =δ pi+1, then the
(δ, α)-matching pre�x from Di,j−1 can be extended to text position j and
row i + 1. In such case we update Di+1,j to be j, and put the row number
i + 1 into the list Wj . This is repeated for all values in Wj−1. After this we
check if also p0 δ-matches the current text character tj , and in such case set
D0,j = j and insert j into Wj . Finally, we must put all the values i ∈ Wj−1

toWj if the row i was not already there, and still it holds that j−Di,j ≤ α.
This completes the processing for the column j.

Alg. 18 gives the code. Note that the additional space we need is just
O(m), since only the values for the previous column are needed for D
and W. In the pseudocode this is implemented by using W and W ′ to
store the pre�x occurrences for the current and previous column, respec-
tively.

The average-case running time of the algorithm depends on how many
values there are on average in the list W. Similar analysis as in Sect. 3.4
can be applied to show that this is O(αδ/σ). Each value is clearly processed
in constant worst-case time, and hence the algorithm runs in O(n + nαδ/σ)
average time. In the worst case the total length of the lists for all columns
is O(min(|M|α, nm)), and therefore the worst-case running time is O(n +
min(|M|α, nm)), since every column must be visited. The preprocessing
phase only needs to initialize D, which takes O(m) time.

3.6. SIMPLE ALGORITHM FOR (δ, α)-MATCHING 93

Alg. 18 DA-sdp-columns(T, n, P, m, δ, α).
1 for i ← 0 to m− 1 do Di ← −α− 1
2 top ← 0
3 for j ← 0 to n− 1 do
4 c ← tj ; h ← 0
5 for i ← 0 to top− 1 do
6 pr ←W ′

i

7 if |c− ppr+1| ≤ δ then
8 if pr + 1 < m− 1 then
9 Wh ← pr + 1; h ← h + 1
10 else
11 report match
12 if |c− p0| ≤ δ then
13 Wh ← 0; h ← h + 1
14 for i ← 0 to h− 1 do DWi ← j
15 for i ← 0 to top− 1 do
16 if DWi 6= j and j −DWi ≤ α then
17 Wh ←W ′

i; h ← h + 1
18 top ← h
19 swap(W,W ′)

Finally, we note that this algorithm can be seen as a simpli�cation of
the algorithm in [MNU05, Sect. 5.4]. We avoid the computation of M in
the preprocessing phase and traversing it in the search phase. The price
we pay is a deterioration in the worst-case time complexity, but we achieve
simpler algorithm that is e�cient on average. This also makes the algorithm
alphabet independent.

3.6 Simple algorithm for (δ, α)-matching

In this section we will develop a simple algorithm that in practice performs
very well on small (δ, α). The algorithm inherits the main idea from Alg. 17,
and actually can be seen as its brute-force variant. The algorithm has two
traits that distinguish it from Alg. 17: (i) the preprocessing phase is inter-
weaved with the searching (lazy evaluation); (ii) binary search of the next
qualifying match position is replaced with a linear scan in an α + 1 wide
text window. These two properties make the algorithm surprisingly simple
and e�cient on average, but impose an O(α) multiplicative factor in the
worst-case time bound.

The algorithm begins by computing a list L of δ-matches for p0:

L0 = {j | tj =δ p0}.

94 CHAPTER 3. MATCHING WITH GAPS

This takes O(n) time (and solves the (δ, α)-matching problem for patterns of
length 1). The matching pre�xes are then iteratively extended, subsequently
computing lists:

Li = {j | tj =δ pi and j′ ∈ Li−1 and 0 < j − j′ ≤ α + 1}.

List Li can be easily computed by linearly scanning list Li−1, and checking
if any of the text characters tj′+1 . . . tj′+α+1, for j′ ∈ Li−1 δ-matches pi.
This takes O(α|Li−1|) time. Clearly, in the worst case the total length of
all the lists is

∑
i Li = |M|, and hence the algorithm runs in O(n + α|M|)

worst-case time.
With one simple optimization the worst case can be improved to O(n +

min{α|M|, nm}) (improving also slightly the constant in front of the average
time complexity). When computing the current list Li, Simple algorithm
may inspect some text characters several times, because the subsequent text
positions stored in Li−1 can be close to each other, in particular, they can
be closer than α+1 positions. In this case the α+1 wide text windows will
overlap, and same text positions are inspected more than once. Adding a
simple safeguard to detect this, each value in the list Li can be computed in
O(α) worst-case time, and in O(1) best case time. In particular, if |M| =
O(nm), then the overlap between the subsequent text windows is O(α), and
each value of Li is computed in O(1) time. This results in O(nm) worst-case
time. The average case is improved as well. Alg. 19 shows the pseudocode,
including this improvement.

Consider now the average case. List L0 is computed in O(n) time. The
length of this list is O(nδ/σ) on average. Hence the list L1 is computed
in O(αnδ/σ) average time, resulting in a list L1, whose average length is
O(nδ/σ × αδ/σ). In general, computing the list Li takes

O(α|Li−1|) = O(nαi(δ/σ)i) = O(n(αδ/σ)i)

average time. This is exponentially decreasing if αδ/σ < 1, i.e. if α < σ/δ,
and hence, summing up, the total average time is O(n).

3.6.1 Sublinear average case
In this section we show how the average-case time of Simple can be improved.
The basic observation is that while building the list L0 not all δ-matches
need to be inserted, but rather only those that have hope to be extended to a
complete match of the whole pattern. In other words, some of the δ-matches
can be skipped. This can be achieved using Boyer�Moore�Horspool (BMH)

3.6. SIMPLE ALGORITHM FOR (δ, α)-MATCHING 95

Alg. 19 DA-sdp-simple(T, n, P, m, δ, α).
1 h ← 0
2 for j ← 0 to n− 1 do
3 if |tj − p0| ≤ δ then
4 L[h] ← j; h ← h + 1
5 for i ← 1 to m− 1 do
6 pn ← h; h ← 0; L[pn] = n− 1
7 for j ← 0 to pn− 1 do
8 for j′ ← L[j] + 1 to min(L[j + 1], L[j] + α + 1) do
9 if |tj′ − pi| ≤ δ then
10 L′[h] ← j′; h ← h + 1
11 if i = m− 1 then report match
12 swap(L, L′)

[Hor80] strategy. We therefore build the list L0 using the BMH approach
(�ltering), and then continue with plain Simple to compute the lists L1...m−1.
This can be seen as a veri�cation phase.

In what follows, we build L0 scanning the text backwards. Lists L1...m−1

are built as before, using Simple. We �rst need the following de�nition:

S[c] = min{i,m | pi =δ c}.

This implies that if S[tj] 6= m, then pS[tj] =δ tj . This gives us a shifting
rule. Assume now that p0 is aligned with tj . We then execute the following
algorithm:

1. If |p0 − tj | ≤ δ, then put j into the list L0.
2. Check tj−α−1...j−1 right to left, computing s = argmini{S[tj−i] | i ∈

[1 . . . α+1]}. If several values of i give the same minimum shift value,
return the smallest i.

3. Shift the pattern with j ← j− (S[tj−s] + s) to align tj−s with pS[tj−s].
4. If j ≥ 0, then go to 1.
5. Pass the computed list L0 to Simple, and compute lists L1...m−1.

The core of the algorithm is the step 2. We scan the text window tj−α−1...j−1.
If some occurrence overlaps this window, then some pattern character must
δ-match one of the characters in this window. We therefore compute the
smallest shift to align some δ-matching pattern character to one of these
text characters. If such character does not exist, then the pattern occur-
rence cannot overlap this window, and the whole pattern is shifted past the
window, i.e. the shift is m + α + 1 characters.

The text scanning is performed backwards, as we want to put the starting
positions (instead of ending positions) of the possible occurrences into the

96 CHAPTER 3. MATCHING WITH GAPS

Alg. 20 DA-sdp-simple-compute-L0(T, n, P,m, δ, α).
1 for i ← 0 to σ − 1 do S[i] ← m
2 for i ← m− 1 downto 0 do
3 for j ← max(0, pi − δ) to min(σ − 1, pi + δ) do S[j] ← i
4 h ← 0; j ← n−m + 1
5 while j ≥ 0 do
6 if |tj − p0| ≤ δ then
7 L′[n− h− 1] ← j; h ← h− 1
8 k ← α; s ← m
9 for i ← 0 to α do
10 if j − i− 1 ≥ 0 and S[tj−i−1] < s then
11 s ← S[tj−i−1]; k ← i
12 j ← j − (s + k + 1)
13 L[0 . . . h− 1] ← L′[n− h . . . n− 1]
14 /* continue with Simple from row 1 */

list L0. The only reason for this is to be compatible with Simple algorithm.
Alg. 20 gives the pseudocode.

As opposed to exact BMH matching, in this variant any shift requires
O(α) prior character accesses. The average pattern shift can be lower-
bounded by O(min(m, 1/ρ)), where ρ is the probability of a δ-matching
symbol in (α + 1)-window, that is, ρ = 1 − (1 − δ/σ)α+1. This probability
is O(α+1

σ/δ) if α + 1 < σ/δ. Thus the average time for large m and small α is
O(nα2δ/σ), which also dominates the veri�cation phase.

3.7 Simple algorithm for (δ, γ, α)-matching

Now we show how to modify the Simple algorithm for (δ, γ, α)-matching.
Again, it is a very practical choice for small (δ, γ, α).

The de�nition of the list L0 remains unchanged, but now, of course, the
lists Li, i > 0, take into account also the γ limitation. Namely:

Li = {j | pi =δ tj ∧ Di−1,j′+ |pi−tj | ≤ γ ∧ j′ ∈ Li−1 ∧ 0 < j−j′ ≤ α+1}.
(3.7)

Building a list Li from Li−1 is like for the previous problem, with the extra
check for the sum of errors, and each time some j is appended into Li, the
corresponding matrix cell Di,j is also updated to hold the sum of errors for
the matching pattern pre�x p0 . . . pi. Note that we put each j only once into
Li, but there can be up to α+1 di�erent j′ ∈ Li−1 that may cause it. In the
case that j is already in Li, we only update Di,j if the new sum is smaller.
This procedure (Alg. 21) takes O(α|Li−1|) time.

3.7. SIMPLE ALGORITHM FOR (δ, γ, α)-MATCHING 97

Alg. 21 DGA-sdp-simple(T, n, P, m, δ, γ, α).
1 h ← 0
2 for j ← 0 to n− 1 do
3 M [j] ← γ + 1
4 d ← |tj − p0|
5 if d ≤ δ then
6 L1[h] ← j
7 G[h] ← d
8 h ← h + 1
9 for i ← 1 to m− 1 do
10 pn ← h; h ← 0
11 for j ← 0 to pn− 1 do
12 g ← G[j]
13 for k ← L1[j] + 1 to min(L1[j] + α + 1, n− 1) do
14 d ← |tk − pi|
15 if d ≤ δ and g + d ≤ γ then
16 if M [k] ≤ γ then
17 if g + d < M [k] then M [k] ← g + d
18 else
19 L2[h] ← k
20 h ← h + 1
21 M [k] ← g + d
22 if i = m− 1 and M [k] ≥ 0 then
23 report match
24 M [k] ← −1
25 if i < m− 1 then for j ← 0 to h− 1 do
26 k ← L2[j]
27 G[j] ← M [k]
28 M [k] ← γ + 1
29 Lt ← L1; L1 ← L2; L2 ← Lt

It is clear that the worst-case time complexity of this algorithm is O(n+
α|M|), but not better, since this time we cannot (easily) bene�t from the
possibly overlapping text windows, since the invariant of this algorithm is
that Di,j stores the error sum associated with the cheapest path to the cell
(i, j). The average-case analysis is exactly like before, we simply ignore
the γ condition, making it pessimistic. Still, because of the preprocess-
ing, the algorithm never works in sublinear time, hence the average time
remains O(n).

3.7.1 Improving the worst case
As a theoretical option, we present a way to improve the worst case of this
algorithm to O(min{mn,α|M|}), reaching the worst-case complexity of the
Simple algorithm for (δ, α)-matching. The idea, again, is to avoid brute

98 CHAPTER 3. MATCHING WITH GAPS

force handling of overlapping windows of size α + 1, but the used means
are much more sophisticated. We make use of the min-queue data structure
[GT86], similarly to the concept from [CIM+02] where the min-queue was
used with plain dynamic programming.

For the current cell Di+1,j , the keys in the queue are the values of Di,j′ ,
where j′ ∈ {Li | 0 < j − Li < α + 1}. For calculating Di+1,j it is enough
to add its individual error to the minimum sum of errors from the queue.
An algorithmic challenge is to update the queue quickly. For each processed
cell only 0 or 1 values have to be inserted to the front of the queue and
from 0 to α + 1 deleted from the tail. Note however that only O(1) cells
(amortized) are inserted or deleted at each step. All the operations can
then be done in O(1) time with the min-queue data structure. This gives
O(min{mn,α|M|}) worst-case time.

Finally, the O(α) factor can be removed by precomputing M. This
can be done in O(min{|M|+ n, δn}) worst-case time and O(n(δσp/σ + 1))
average-case time for integer alphabets (see Sect. 3.9). HavingM available,
we can avoid the brute force scanning for δ-matches. M can be stored e.g. in
Johnson's data structure [Joh82] which supports a homogeneous sequence
of insertions and successor searches in O(log log(nm/|M|)) time. This gives
O(|M| log log(nm/|M|)) worst-case time, but destroys the good average
case because of the costly precomputation. Note that O(|M| + n) worst-
case algorithm is easy to obtain by simply scanning M linearly, but this
then becomes also the average case. Unfortunately, it is hard to �nd a
solution that optimizes the worst case and also keeps the average case time
complexity.

3.8 Bit-parallel dynamic programming for (δ, α)-matching

In this section we show how bit-parallelism can be used to bring the worst-
case complexity of dynamic programming down to O(nδ + dn/wem), where
w is the number of bits in a computer word.

We number the bits from the least signi�cant bit (0) to the most sig-
ni�cant bit (w − 1). C�like notation is used for the bit-wise operations of
words; & is bit-wise and, | is or, ∼ negates all bits, << is shift to left,
and >> shift to right, both with zero padding.

Let us �rst de�ne a matrix D. Let Di,j = 1 if p0p1 . . . pi =α
δ thth+1 . . . tj .

Otherwise, Di,j = 0. This can be expressed as:

Di,j =
{

1, pi =δ tj and ∃j′ : 0 < j − j′ ≤ α + 1 and Di−1,j′ = 1
0, otherwise. (3.8)

3.8. BIT-PARALLEL DYNAMIC PROG. FOR (δ, α)-MATCHING 99

At a �rst glance it seems that this recurrence would lead to O(αnm) time.
However, we show how to compute O(w) columns in each row of the matrix
in O(1) time, independent of α, leading to O(dn/wem) total time.

To this end, assume that in the preprocessing phase we have computed
a helper bit-matrix (whose e�cient computation we will consider later) V :

Vi,j =
{

1, pi =δ tj
0, otherwise. (3.9)

The computation of D will proceed column-wise, w columns at once. Each
matrix element takes only one bit of storage, so we can store w columns
in a single machine word. Assume that we have computed all rows of the
columns (j − 1)w . . . jw − 1, and columns jw . . . (j + 1)w − 1 up to row
i − 1, and we want to compute the columns jw . . . (j + 1)w − 1 at row i.
Assume also that α < w. We adopt the notation Dw

i,j = Di,jw...(j+1)w−1,
and analogously for V . The goal is then to produce Dw

i,j from V w
i,j , Dw

i−1,j

and Dw
i−1,j−1. Dw

i,j does not depend on any other Dw element, according to
the de�nition of D, and given our assumption that α < w.

Now, according to Eq. (3.8), the kth bit in Dw
i,j should be set i� (i) the

kth bit in V w
i,j is set (i.e. pi =δ tjw+k), and (ii) any of the bits k−α−1 . . . k−1

in Dw
i−1,j or any of the bits k+w−α−1 . . . w−1 in Dw

i−1,j−1 is set (i.e. the gap
length to the previous match is at most α). To compute item (ii) e�ciently
we assume that we have available function M(x):

M(x) = M(x, α) = (x << 1) | (x << 2) | . . . | (x << (α + 1)). (3.10)

In other words, M(x) copy-propagates all bits in x to left 1 . . . α+1 positions.
This means that if the 1 bits in x correspond to the matching positions of
a pattern pre�x, then M(x) will have those 1 bits aligned in all positions
where the matching pre�x could be extended. Note that the representation
of M(x) needs w +α+1 bits, i.e. at most 2w bits (two computer words) for
α < w. We can now write the recurrence for Dw:

Dw
i,j = V w

i,j & (M(Dw
i−1,j) | (M(Dw

i−1,j−1) >> w)). (3.11)

Fig. 3.2 illustrates the bits a�ecting the current row; note that also the case
of a negative gap is exposed there.

We are not able to compute M(x) in constant time, hence we use a
precomputed look-up table instead. Since w can be too large to make this
approach feasible, we can precompute the answers e.g. to only w/2 or w/4
bit numbers, and correspondingly compute M(x) in 2 or 4 pieces without

100 CHAPTER 3. MATCHING WITH GAPS

a�ecting the time complexity (in our tests we used w/2 = 16 bit numbers
for computing M(x)).

We also need to compute V e�ciently. This is easy with table look-ups as
we have an integer alphabet. We �rst compute a table L, such that for all c ∈
Σ the list L[c] contains all the distinct characters pi that satisfy pi =δ c. Us-
ing this table we build a table V ′, which we will use as a terse representation
of V , namely we have that V ′[pi] = Vi. This can be done by scanning through
the text, and setting the jth bit of the bitvector V ′[c] to 1 for each c ∈ L[tj].
This process takes O(dn/weσp + m + σ + δσp + δn) = O(dn/weσp + δn)
worst-case time. The probability that two characters δ-match is at most
(2δ + 1)/σ, and hence the expected number of matching pattern characters
for each text character is O(δσp∩t/σt). Therefore, the average-case complex-
ity of the preprocessing is O(dn/weσp + n(δσp∩t/σt + 1)). Searching clearly
takes only O(dn/wem) time.

3.8.1 Fast algorithm on average
We make the following observation: if Di...m−1,j−α...j = 0, for some i, j,
then Di+1...m−1,j+1 = 0. This is because there is no way the recurrence can
introduce any other value for those matrix cells. In other words, if p0 . . . pi

does not (δ, α)-match th . . . tj−k for any k = 0 . . . α, then the match at the
position j + 1 cannot be extended to p0 . . . pi+1. This can be utilized by
keeping track of the highest row number top of the current column j such
that Dtop,j 6= 0, and computing the next column only up to row top + 1.
More formally, we de�ne (for Dw) the maximum row topw

j for the column j
as:

topw
j = argmaxi{Dw

i−1,j−1 & a 6= 0 or Dw
i−1,j & (∼0 >> 1) 6= 0}, (3.12)

where the bitmask a = ∼0 << (w − α − 1). Consider �rst the part
Dw

i−1,j−1 & a 6= 0. The rationale is as follows. When we are computing
Dw

i,j , only the α + 1 highest non-zero bits of Dw
i−1,j−1 can a�ect the bits in

Dw
i,j . These are selected by the & a operation. However, since we are com-

puting w columns in parallel, the w − 1 least signi�cant set bits in Dw
i−1,j

(the second part), i.e. in the previous row of the current set of columns,
can a�ect the bits in Dw

i,j as well. Obviously, this second part cannot be
computed at column j − 1. We solve this simply by computing the �rst
part of topw

j after the column j − 1 has been computed, and when process-
ing the column j, we increase topw

j if needed according to the second part
(Dw

i−1,j & (∼0 >> 1) 6= 0).

3.8. BIT-PARALLEL DYNAMIC PROG. FOR (δ, α)-MATCHING 101

Alg. 22 DA-bpdp(T, n, P, m, δ, α).
1 V ← DA-bpdp-preprocess(T, n, P, m, δ, α)
2 w′ ← w/2; msk ← (1 << w′)− 1
3 for i ← 0 to (1 << w′)− 1 do
4 M [i] ← 0
5 for j ← 0 to α do M [i] ← M [i] | (i << (j + 1))
6 top ← m− 1
7 D0 ← V [p0][0]
8 for i ← 1 to top do
9 Di ← V [pi][0] & (M [Di−1 & msk] | (M [Di−1 >> w′] << w′))
10 if Dm−1 6= 0 then report matches
11 for j ← 1 to dn/we do
12 D′

0 ← V [p0][j]
13 i ← 1
14 while i ≤ top do
15 x ← M [D′

i−1 & msk] | (M [D′
i−1 >> w′] << w′)

16 y ← M [Di−1 >> w′] >> w′

17 D′
i ← V [pi][j] & (x | y)

18 if i = top and top < m− 1 and D′
i & (∼0 >> 1) 6= 0 then

19 Di ← 0
20 top ← top + 1
21 i ← i + 1
22 if top = m− 1 and D′

m−1 6= 0 then report matches
23 while top > 0 and D′

top & (∼0 << (w − α− 1)) = 0 do top ← top − 1
24 if top < m− 1 then top ← top + 1
25 Dt ← D; D ← D′; D′ ← Dt

Alg. 22 gives the pseudocode. It uses w′ = w/2 bits for the precomputed
table for the M(·) function. For simplicity, the code also assumes that
α < w′ (but w columns are still processed in parallel). The average-case
running time of this algorithm depends on what is the average value of topw.
For w = 1 it can be shown that avg(top1) = O(δ

σ(1−δ/σ)α+1) [CCF05b]. This
is O(αδ/σ) for δ/σ < 1−α−1/(α+1), so the average time is O(ndαδ/σe). We
are not able to analyze avg(topw) exactly, but we make use of the trivial
observation that avg(top1) ≤ avg(topw) ≤ avg(top1) + w − 1, which lets
us conclude that the amortized average search time of Alg. 22 is at most
O(dn/wedαδ/σe+ n).

The O(dn/weσp + δn) (worst-case) preprocessing time can be the dom-
inating factor in some cases. We now present an alternative preprocessing
variant. The idea is to partition the alphabet into dσ/δe disjoint intervals
of width δ. Let us �rst rede�ne V as V δ:

V δ
i,j =

{
1, |bpi/δc − btj/δc| ≤ 1
0, otherwise. (3.13)

102 CHAPTER 3. MATCHING WITH GAPS

α + 1

w(j − j′)− w + 1w(j − j′) + w − 1

Dw
i−1,j′

Dw
i,j

Figure 3.2: (δ, α)-matching. Tiling the dynamic programming matrix with w × 1
vectors (w = 8). The black cell of the current tile depends on the dark gray cells
of the two tiles in the previous row (α = 4). The light gray cells depict a negative
gap, together with the dark gray cells the gap is −3 . . . 4. The arrows illustrate
some bit distances for the case α ≥ w

Obviously, if Vi,j = 1, then also V δ
i,j = 1. On the other hand, the converse

is not true, i.e. it is possible that V δ
i,j = 1 but Vi,j = 0. This means that we

can use V δ in place of V , but the search algorithm becomes a �lter, and the
candidate occurrences must be veri�ed using some other algorithm, e.g. plain
dynamic programming, which makes the total complexity O(nm) in the
worst case. However, the bene�t is that V δ is very simple to compute, taking
only O(n) time. The initialization time drops to O(dn/wemin(σp, σ/δ)),
since it takes O(dn/we) for each distinct bpi/δc.

Note that one can use the de�nition V δ
j [pi/δ] = 1 i� bpi/δc = btj/δc in-

stead of V δ
i,j , and then the fact that V δ

i,j = V δ
j [pi/δ−1] | V δ

j [pi/δ] | V δ
j [pi/δ+

1] in the search phase. This speeds up the preprocessing by a constant fac-
tor, but slows down the search correspondingly. We use this approach in
our experiments.

This can be still improved by interweaving the preprocessing and search
phases, so that we initialize and preprocess V δ only for topw

j length pre�xes
of the pattern for each j. At the time of processing the column j, we only
know topw

j−1, so we use an estimate ε×topw
j−1 for topw

j , where ε > 1 is a small
constant. If this turns out to be too small, we just increase the estimate
and re-preprocess for the current column. The total preprocessing cost on
average then becomes only O(dn/weσtopw + n), where σtopw is the alphabet
size of topw length pre�x of the pattern. Hence the initialization time is at
most O(dn/wedαδ/σe+n). We require that δ < σ/3, as otherwise the prob-
ability of a match becomes 1. The average number of veri�cations decreases
exponentially for m > avg(topw), making their cost negligible, so the total
preprocessing, �ltering and veri�cation time is O(dn/wedαδ/σe+ n). For
larger δ or smaller m the �lter becomes useless.

3.8. BIT-PARALLEL DYNAMIC PROG. FOR (δ, α)-MATCHING 103

3.8.2 Handling large α in O(1) time
Alg. 22 assumes that α < w. For larger α the time increases by O(α/w)
factor, as the gap may span over several machine words. Here we present
how to remove this limit while maintaining the O(1) cost for processing w
columns.

Let us de�ne Last Pre�x Occurrence:

LPO i,j =
{

j′, max j′ ≤ j such that Dw
i,j′ 6= 0

−α− 1, otherwise. (3.14)

I.e. for LPO i,j = j′, Dw
i,j′ is the vector that corresponds to the last (δ, α)-

match(es) of the pre�x p0 . . . pi in the text area t0 . . . twj−1. If such vector
does not exist (e.g. when j = 0) we set LPOi,j = −α− 1.

Assume that α ≥ w and consider the computation of Dw
i,j . The recur-

rence becomes
Dw

i,j = V w
i,j & (M(Dw

i−1,j , w) | ov). (3.15)
The vector ov is computed according to the last pre�x occurrence infor-
mation. Let j′ = LPOi−1,j−1. We have the following four cases (see also
Fig. 3.2):

1. j′ < 0: no matching pre�xes have been found, hence ov = 0.
2. w(j − j′)−w + 1 > α + 1: no bit of Dw

i−1,j′ can a�ect any bit in Dw
i,j ,

hence we set ov = 0.
3. w(j − j′) + w − 1 ≤ α + 1: any set bit in Dw

i−1,j′ is close enough to
a�ect any bit in Dw

i,j , hence we set ov = ∼0.
4. Otherwise some bits of Dw

i−1,j′ can be close enough to a�ect some bits
of Dw

i,j , and we set ov = (M(Dw
i−1,j′ , α mod w) >> w).

Note that since α ≥ w, the function M(·, ·) is now much easier to com-
pute. M(Dw

i−1,j , w) = 2w−2×LSB(Dw
i−1,j), where LSB(x) extracts the least

signi�cant set bit of x. The �rst subtraction operation then propagates the
LSB to every higher position as well, while the second subtraction then clears
the least signi�cant bit of the result. The solution for LSB(x) is part of the
computing folklore, and can be computed as LSB(x) = (x & (x − 1)) ∧ x
in O(1) time. Likewise, it is easy to see that M(Dw

i−1,j′ , α mod w) >> w =

2s − 1 for s = α mod w − (w −
⌊
log2(Dw

i−1,j′)
⌋
− 1) + 1, where blog2(x)c

e�ectively gets the index of the most signi�cant set bit of x. In other words,
s tells the number of bit positions the most signi�cant bit of Dw

i−1,j′ propa-
gates to to �ll the least signi�cant bits of ov. If s < 0, we just set ov = 0.

Finally, LPO i,j can be easily maintained in constant time for each i, j.
LPO(i,−1) is initialized to −α− 1 for all i, which takes O(m) time. Then,

104 CHAPTER 3. MATCHING WITH GAPS

the computation of Dw proceeds column-wise. After Dw
i,j is computed, we

simply set LPO i,j = j i� Dw
i,j 6= 0, otherwise we set LPO i,j = LPO i,j−1.

In practice we can store only the latest value of LPO for each row, so only
O(m) space is needed. Hence we can conclude that the value of α does not
a�ect the running time of the algorithm.

3.8.3 Relaxing δ and α

Alg. 22 can be generalized to the case where the gap limit can be of dif-
ferent length for each pattern character [PW05], and where the δ-matching
is replaced with character classes, i.e. each pattern character is replaced
with a set of characters. More precisely, pattern p0p1p2 . . . pm−1, where
pj ⊂ Σ, matches ti0ti1ti2 . . . tim−1 , if tij ∈ pj for j ∈ {0, . . . ,m − 1}, where
aj ≤ ij+1 − ij ≤ bj + 1, where aj and bj are the minimum and maximum
gap lengths permitted for a pattern position j. This problem has impor-
tant applications e.g. in protein searching, see [NR03]. Yet a stronger model
[Mye96] allows gaps of negative lengths, i.e. aj (and bj) can be negative.
In other words, parts of the pattern occurrence can be overlapping in the
text, see Fig. 3.2. First note that handling character classes is trivial, since
it only requires a small change in the computation of V . As for the gaps,
consider �rst the situation where (i) ai ≥ 0; or (ii) bi ≤ 0. In either case
we have ai ≤ bi. Handling the case (i) is just what our algorithm already
does. The case (ii) is just the dual of the case (i), and conceptually it can
be handled by just scanning the current row from right to left, and using
the limits −bi − 2,−ai − 2 instead of ai, bi, and handling the gap −1 as a
special case.

The core of Alg. 22 is the use of M(x) (Eq. (3.10)) to select the positions
from the previous row where a matching pattern pre�x ends. To handle gaps
of the form ai ≥ 0 we use

ML
i (x) = (x << (ai +1)) | (x << (ai +2)) | . . . | (x << (bi +1)). (3.16)

For the negative gaps bi < 0 we just align the bits from right, and hence
de�ne:

MR
i (x) = (x >> −bi − 1) | (x >> −bi) | . . . | (x >> −ai − 1). (3.17)

The general case ai < 0 ≤ bi is handled as a combination of these:

Mi(x) = (x >> −ai − 1) | (x >> −ai) | . . . | (x << (bi + 1)). (3.18)

3.9. BIT-PARALLEL DYNAMIC PROG. FOR (δ, γ, α)-MATCHING 105

The �nal simple modi�cation that we need is to take Dw
i−1,j+1 into account

while computing Dw
i,j , since the negative gaps may span into it. Hence we

modify Eq. (3.11) to:

Dw
i,j = V w

i,j & ((ML
i (Dw

i−1,j−1) >> w) | Mi(Dw
i−1,j) | (3.19)

(MR
i (Dw

i−1,j+1 << w) >> w)). (3.20)

3.9 Bit-parallel dynamic programming for (δ, γ, α)-matching

We now show how the basic dynamic programming algorithm can be bit-
parallelized. The algorithm is based on the bit-parallel dynamic program-
ming algorithm for (δ, α)-matching [FG06c] (see Sect. 3.8). All the inter-
esting values in the matrix D are at most γ, and all other values can be
represented as any value greater than γ. Hence O(log γ) bits per matrix
cell is su�cient, and we can compute O(w/ log γ) cells in parallel, where w
is the number of bits in a machine word. Moreover, we show how to han-
dle α up to O(w/ log γ) e�ciently. Assuming w = Θ(log n), we obtain an
O(nm log(γ)/w) worst-case time algorithm.

Each matrix cell is represented with

` = dlog2(2γ + 1)e (3.21)

bits, and number zero is represented (using ` bits) as 2`−1 − (γ + 1). This
representation has been used before e.g. for (δ, γ)-matching [CIN+05]. We
still need an additional bit per cell, and hence each machine word packs

C = bw/(` + 1)c (3.22)

cells, or counters. This representation solves three problems we are going to
face shortly: (i) counter over�ows can be handled in parallel; (ii) it is easy
to check in parallel if some of the counters have exceeded γ; (iii) thanks to
the additional bit it is easy to compute pair-wise minima over two sets of
counters in parallel.

Assume then that in the preprocessing we have computed a helper matrix
V :

Vi,j =
{ |pi − tj |, pi =δ tj

γ + 1, otherwise. (3.23)

The computation of D will proceed column-wise, C columns at once. We
use again the notation Dw

i,j = Di,jC...(j+1)C−1, and analogously V C for V ,
to make the parallelism explicit. Assume now that α < C. The goal is

106 CHAPTER 3. MATCHING WITH GAPS

Figure 3.3: (δ, γ, α)-matching. Tiling the dynamic programming matrix with C =
bw/(` + 1)c × 1 vectors (C = 8). The dark gray cell of the current tile depends on
the light gray cells of the two tiles in the previous row (α = 4)

then to produce Dw
i,j from V C

i,j , Dw
i−1,j and Dw

i−1,j−1. Dw
i,j does not depend

on any other Dw element, according to the de�nition of D, and given our
assumption that α < C. Fig. 3.3 illustrates.

Now, according to the recurrence (cf. Eq. (3.5)), the kth counter in
Dw

i,j is the sum of (i) the kth counter of V C
i,j (i.e. |pi − tjC+k|) and (ii)

the minimum of the counters k − α − 1 . . . k − 1 in Dw
i−1,j and the counter

k+C−α−1 . . . C−1 in Dw
i−1,j−1 (i.e. the gap length to the previous match

is at most α), see Fig. 3.3.
To compute item (ii) e�ciently we assume that we have available func-

tion M(x), that replaces each counter in x with the minima of the α + 1
previous counters in x. The recurrence for Dw then becomes:

Dw
i,j = V C

i,j + (M((Dw
i−1,j << w) | (Dw

i−1,j−1 << (w − w % C))) >> w),
(3.24)

where for simplicity we have assumed that M(x) can handle words of length
2w. However, the above equation may cause counter over�ow. To prevent
this we use

Dw
i,j = (V C

i,j + (M ′ & ∼hmsk)) | (M ′ & hmsk) (3.25)

instead, where

M ′ = M((Dw
i−1,j << w) | (Dw

i−1,j−1 << (w − w % C))) >> w, (3.26)

and hmsk selects the `th bit of each counter. That is, M ′ & ∼hmsk clears
the highest bit of each counter, so that the result can be safely added to V C

i,j ,
and then | (M ′ & hmsk) restores the highest bit. This works correctly, as
if the highest bit was set, then the sum is certainly greater than γ, and its
exact value is not interesting anymore. The (` + 1)th bit is not a�ected by
the summation as the maximum value added is γ + 1.

3.9. BIT-PARALLEL DYNAMIC PROG. FOR (δ, γ, α)-MATCHING 107

Finally, to detect the possible pattern occurrences we must add our rep-
resentation of zero (2`−1 − (γ + 1)) to each counter. If some of the counters
have still not over�owed, the corresponding text positions match. This can
be detected as

q = ∼(((Dw
m−1,j & ∼hmsk) + zeromsk) | Dw

m−1,j) & hmsk , (3.27)

where zeromsk has the value 2`−1 − (γ + 1) in each counter position. Each
set bit in q then indicates a pattern occurrence.

Consider now the computation of M(x). One possible solution is to use
table look-ups to compute it in constant time. Since w can be too large
to make this approach feasible, we can precompute the answers e.g. to only
w/2 or w/4 bit numbers, and correspondingly compute M(x) in 2 or 4 pieces
without a�ecting the time complexity (in our tests we used at most w/2 = 16
bit numbers for computing M(x)).

Another solution is to use repeated shifting and minimization. That is,
assuming that vmin(x, y) computes pair-wise minima of the counter sets x
and y, we compute x ← vmin(x, (x << (` + 1)) | (γ + 1)) and repeat that
α times, and then perform the �nal shift x ← x << (` + 1), which gives
the desired result. The minimization can be done in O(1) time [PS80], see
Alg. 23. The total time for computing M(x) is then O(α). This can be easily
improved to O(log(α)). Without loss of generality assume that α is a power
of two. Instead of shifting one counter position at a time we �rst shift by
α/2 counter positions, then α/4 counter positions, and so on log2(α) times,
performing the minimization at each step. (Note that if α is not a power
of two, the number of shifts in the procedure will grow at most (almost)
twice, which can be accomplished by caching temporary results.) Alg. 24
shows the code, handling the general case as well. This algorithm takes the
counter sets Dw

i−1,j and Dw
i−1,j−1, that can a�ect the current counters Dw

i,j ,
as parameter. For simplicity these are handled as a concatenated single
word of 2w bits. Eq. (3.26) then becomes

M ′ = M(Dw
i−1,j , D

w
i−1,j−1, α,msk), (3.28)

where msk has every (` + 1)th bit set, needed at the counter minimiza-
tion.

We also need to compute V e�ciently. Again, we make use of table look-
ups for that, as we deal with an integer alphabet. First we build a table
L, such that for all c ∈ Σ the list L[c] contains all the distinct characters
pi that satisfy pi =δ c. Next we build a a table V ′, which will be used as
a terse representation of V , namely we have that V ′[pi] = Vi. This can be

108 CHAPTER 3. MATCHING WITH GAPS

Alg. 23 vmin(x, y,msk)
1 F ← ((x | msk)− y) & msk
2 F ← F − (F >> `)
3 return (x & ∼F) | (y & F)

Alg. 24 M(x, y, α,msk).
1 x ← (x << w) | (y << (w − w % C))
2 while α 6= 0 do
3 r ← α % 2
4 α ← bα/2c
5 x ← vmin(x, x << ((` + 1)α),msk)
6 if r = 0 then continue
7 x ← vmin(x, x << (` + 1),msk)
8 return (x << (` + 1)) >> w

done by scanning through the text, and setting the jth counter of V ′[c] to
|c− tj | for each c ∈ L[tj]. This process takes O(dn/Ceσp + m + σ + δσp +
δn) = O(dn/Ceσp + δn) worst-case time. Using a known argument (cf.
Sect. 3.8) we have that the expected number of matching pattern characters
for each text character is O(δσp/σ). Therefore, the average-case complexity
of the preprocessing is O(dn/Ceσp + n(δσp/σ + 1)). Searching takes only
O(dn/Cem) = O(dn log(γ)/wem) time if table look-ups are used for com-
puting M(x), and O(dn log(α) log(γ)/wem) if Alg. 24 is used. For α larger
than O(w/ log(γ)) the search time must be multiplied by O(dα log(γ)/we).

3.9.1 Cut-o�
The cut-o� trick used in Sect. 3.3 obviously works for the bit-parallel algo-
rithm as well. More formally, we de�ne (for Dw) the maximum row topC

j

for the column j as:

topC
j = argmaxi{(MatchMsk(Dw

i−1,j−1) >> ((C − α− 1)(` + 1))) 6= 0 or
(MatchMsk(Dw

i−1,j) << (` + 1)) 6= 0}, (3.29)

where

MatchMsk(x) = ∼(((x & ∼hmsk) + zeromsk) | x) & hmsk . (3.30)

Consider �rst the part (3.29). The rationale is as follows. When we are
computing Dw

i,j , only the last α + 1 counters of Dw
i−1,j−1 that are at most

γ can a�ect the counters in Dw
i,j . We therefore select the corresponding

counter bits that indicate whether or not the sum has exceeded γ. However,

3.9. BIT-PARALLEL DYNAMIC PROG. FOR (δ, γ, α)-MATCHING 109

since we are computing C columns in parallel, the C − 1 �rst counters that
have a value of at most γ in Dw

i−1,j (3.29), i.e. in the previous row of the
current set of columns, can a�ect the counters in Dw

i,j as well. Obviously, this
second part cannot be computed at column j − 1. We solve this simply by
computing the �rst part of topC

j after the column j− 1 has been computed,
and when processing the column j, we increase topC

j if needed according to
the second part (3.29).

Alg. 25 gives the pseudocode. It uses the O(log(α)) time algorithm
for the M(·) function. The average-case running time of this algorithm
depends on what is the average value of topC . For C = 1 and γ = ∞
avg(top1) = O

(
δ

σ(1−δ/σ)α+1

)
, see Sect. 3.3. We are not able to analyze

avg(topC) exactly, but we have trivially that avg(top1) ≤ avg(topC) ≤
avg(top1) + C − 1, and hence the amortized average search time of Alg. 25
is at most O((dn/Cedαδ/σe + n) log(α)). The log(α) factor can be easily
removed with precomputation.

Constant time initialization of V

The initialization of V (to set all values to γ + 1) can be done in O(1) time
using the trick described in [Meh84, Sect. III 8.1]. This requires using two
auxiliary arrays, but the asymptotic space complexity does not change, and
V can be still accessed in O(1) time. This removes the O(dn/Ceσp) term
from the preprocessing time, which could otherwise dominate the search
time of the cut�o� algorithm.

3.9.2 Lazy preprocessing
This can be still improved by interweaving the preprocessing and search
phases, so that we initialize and preprocess V C only for topC

j length pre�xes
of the pattern for each j. At the time of processing the column j, we only
know topC

j−1, so we use an estimate ε×topC
j−1 for topC

j , where ε > 1 is a small
constant. If this turns out to be too small, we just increase the estimate and
re-preprocess for the current column. The total preprocessing cost on aver-
age then becomes only O(dn/CeσtopCδ/σ + n), where σtopC is the alphabet
size of topC length pre�x of the pattern. Hence the initialization time is at
most O(dn/Cedαδ/σe+n) on average. This matches the search time, and to-
gether with the preprocessing the total is O(dn/Cedαδ/σe+ndαδ/σeδ/σ+n)
on average.

110 CHAPTER 3. MATCHING WITH GAPS

Alg. 25 DGA-bpdp(T, n, P,m, δ, γ, α).
1 ` ← dlog2(2γ + 1)e
2 f ← (w/(` + 1))
3 zmsk ← (1 << (` + 1))− 1
4 for i ← 0 to σ − 1 do A[i] ← 0
5 for i ← 0 to m− 1 do
6 if A[pi] then continue
7 A[pi] ← 1
8 for j ← max{0, pi − δ} to min{pi + δ, σ − 1} do
9 Lt[j] ← Lt[j] ∪ {pi}
10 zero ← (1 << (l− 1))− (γ + 1)
11 hhmsk ← 0
12 for i ← 0 to f − 1 do hhmsk ← hhmsk | (1 << ((i + 1)(` + 1)− 1))
13 hmsk ← hhmsk >> 1
14 b ← (n + f − 1)/f
15 for i ← 0 to σ − 1 do
16 V [i] ← 0
17 if A[i] 6= 0 then
18 for j ← 0 to b− 1 do V [i][j] ← hmsk
19 for j ← 0 to n− 1 do
20 for i ← 0 to |Lt[tj]| − 1 do
21 c ← Lt[tj][i]
22 V [c][j/f] ← V [c][j/f] & ∼(zmsk << ((j % f)(` + 1)))
23 V [c][j/f] ← V [c][j/f] | (|c− tj | << ((j % f)(` + 1)))
24 top ← m− 1
25 D[0] ← V [p0][0]
26 for i ← 1 to top do
27 x ← M(D[i− 1], hmsk , α, hhmsk)
28 D[i] ← (V [pi][0] + (x & ∼hmsk)) | (x & hmsk)
29 zeromsk ← 0
30 for i ← 0 to f − 1 zeromsk ← zeromsk | (zero << (i(` + 1)))
31 x ← ∼(((D[m− 1] & ∼hmsk) + zeromsk) | D[m− 1]) & hmsk
32 if x 6= 0 then report matches
33 k ← ((f − α− 1)(` + 1))
34 for j ← 1 to b− 1 do
35 D′[0] ← V [p0][j]
36 if top = 0 then
37 if (∼(((D′[0] & ∼hmsk) + zeromsk) | D′[0]) & hmsk) 6= 0 then
38 D[0] ← hmsk ; top ← top + 1
39 for i ← 1 to top do
40 x ← M(D′[i− 1], D[i− 1], α, hhmsk)
41 D′[i] ← (V [pi][j] + (x & ∼hmsk)) | (x & hmsk)
42 x ← ∼(((D′[i] & ∼hmsk) + zeromsk) | D′[i]) & hmsk
43 if i = top and top < m− 1 and (x << (` + 1)) 6= 0 then
44 D[i] ← hmsk ; top ← top + 1
45 if top = m− 1 and x 6= 0 then report matches
46 do x ← (∼(((D′[top] & ∼hmsk) + zeromsk) | D′[top]) & hmsk) >> k
47 if x = 0 then top ← top − 1
48 while top ≥ 0 and x = 0
49 if top < m− 1 then top ← top + 1
50 Dt ← D; D ← D′; D′ ← Dt

3.9. BIT-PARALLEL DYNAMIC PROG. FOR (δ, γ, α)-MATCHING 111

3.9.3 Improving the worst case for large α

The bit-parallel algorithm can handle C cells in O(1) time only if α =
O(w/ log(γ)). Otherwise the time becomes O(dα log(γ)/we). Our aim is to
reduce this in the case of w/ log(γ) < α < γ2, which is our precondition
for this subsection. However, we still process just C cells in parallel. For
simplicity we also assume that α = O(w/ log(α/γ)), as this will allow parallel
processing of C cells in O(1) time.

To improve the worst case we �rst note that we do not need to know
the sum of errors for all the past α + 1 cells, but only those that are �non-
dominated�. In other words, if we are computing Di,j , then the value Di−1,j′ ,
is interesting only if Di−1,j′ ≤ γ and there is no cell (i − 1, j′′) such that
Di−1,j′′ ≤ Di−1,j′ and 0 < j− j′′ < j− j′ ≤ α+1. In principle this allows us
to pack the error sums more succinctly. There are, however, several problems
to be solved before we can put this idea into good use. The �rst is that this
idea cannot be applied straightforwardly for our bit-parallel algorithm. I.e.
assume that we want to compute Dw

i,j . This depends on Dw
i−1,j , but the

cells in this chunk can be both dominated and non-dominated, depending
on which cell of Dw

i,j we are looking at. Hence we are going to handle Dw
i−1,j

as a special case. However, this is not a problem for Dw
i−1,j′ , where j′ < j,

as then there is no ambiguity with respect to the cells in Dw
i,j .

This means that we can keep the di�erence sum positions ordered accord-
ing to the distance from the left-most cell of Dw

i,j , and only store the positions
according to increasing sums, in a di�erential representation. There are only
at most γ + 1 such interesting cells, i.e. di�erent sums of errors. The di�er-
ences between the positions of them can be encoded e.g. with Elias coding
[Eli75] and we obtain amortized O(log(α/γ)) bits for each, in the worst case.
Therefore we can encode O(w/ log(α/γ)) non-dominated error sums into a
single computer word, which is an improvement over the previous represen-
tation if α < γ2. Note that not all the γ + 1 distinct error values may occur
in the window. We encode a dummy position o�set of 0 for these sums to
indicate that they are not present.

We now show how this encoding is used. Assume that we are processing
the chunk Dw

i,j . The chunk Dw
i−1,j is processed exactly as before, i.e. it is

given as an input to the function M(·) to obtain (in O(1) time) a bit-vector
which we call u from now on. Assume that we have another matrix Γ that
packs the error sums as described above. More precisely, Γi,j packs the non-
dominated error sums corresponding to Dw

i−1,j−1, D
w
i−1,j−2, . . . , D

w
i−1,j−dα/Ce.

If we make the assumption that Γi,j has only w bits, we can use precomputed
tables (see below) to implement a function MΓ(·), that is similar to M(·)

112 CHAPTER 3. MATCHING WITH GAPS

used before. That is, MΓ(Γi,j) gives a bit-vector v, that is, minimized and
copy-propagated error sums (to α+1 positions), exactly as before. Then to
compute the value of Dw

i,j we use Alg. 23 to compute the pair-wise minima
of the �elds of u and v, i.e. we execute g = vmin(u, v, msk). This takes O(1)
time. Then we can just use g in place of M ′ (see Eq. (3.26)) in Eq. (3.25).

This leaves only one loose end to be resolved. That is, we must somehow
obtain Γi,j+1 before we continue. This depends on Γi,j we just used, and on
Dw

i,j we just obtained using it. Our solution is to simply use precomputation
again. I.e. we use Γi,j+1 = U [Γi,j , D

w
i,j]. In practice w is too large, so as in the

case of precomputed M(·) function, we use e.g. w/2 or w/4 and compute the
answers in several (constant number of) pieces. Theoretically, in unit cost
RAM model of computation log(n) = O(w), and we can use e.g. bit-vectors
of length 1

2 log(n) to compute MΓ in two pieces, and similarly 1
4 log(n) to

implement U . This results in tables of size O(
√

n) only.
In total the worst-case time of the algorithm is still O(nm log(γ)/w),

but this time the bound holds for much larger values of α. The technique
obviously works for the Cut-o� variant equally well.

3.9.4 Multiple patterns

The algorithm has relatively high preprocessing cost O(δn) (or O(δn +
σpdn/Ce) without the fast initialization technique) in the worst case. How-
ever, if we want to search for a set of r patterns, instead of only one pattern,
the preprocessing remains essentially the same, since it depends only on the
text and the pattern alphabet. The total (worst-case) preprocessing time
increases only to O(δn+rm), where we have pessimistically considered that
m is the length of the longest pattern in the set. The search times have
to be multiplied by r, but the amortized preprocessing cost per pattern is
considerably reduced. If r is small as compared to σ/δ, the search cost can
be reduced by �superimposing� the patterns, that is we de�ne

Vi,j =
{

min |p− tj |, p =δ tj and p ∈ ph
i , h ∈ 0 . . . r − 1

γ + 1, otherwise, (3.31)

where we use the notation ph
i to denote the ith symbol of the hth pattern.

We then need only one search, but the potential matches must be veri�ed.
Superimposing works for the other algorithms as well.

3.10. NON-DETERMINISTIC FINITE AUTOM. FOR (δ, α)-MATCHING 113

3.9.5 Filtering
Alg. 25 is substantially more complex than its ancestor, the (δ, α)-matching
algorithm [FG06c]. In addition to being simpler, the previous algorithm
achieves greater parallelism, as it search phase takes O(dn/wem) time in the
worst case. However, we note that this algorithm (as any (δ, α)-matching
algorithm) can be used as a �lter, since it implicitly assumes that γ = ∞.
The potential occurrences have to veri�ed, which can be done using any of
the algorithms given in this chapter. The worst-case time then becomes that
of the veri�cation algorithm.

3.10 Non-deterministic �nite automata for (δ, α)-matching

In this section we present an algorithm for (δ, α)-matching based on non-
deterministic �nite automaton. We review our worst-case optimized algo-
rithm [FG06c] only, but in [FG08b] we also reduced its average-case running
time. Our algorithm improves the solution from [NR03], where the proposed
automaton required m + (m − 1)α bits to represent the search state. We
managed to reduce this to O(m log(α)) bits, and hence the worst-case time
to O(nd(m log(α))/we).

At a high level, the algorithm can be seen as a novel combination of Shift-
And and Shift-Add algorithms [BYG92]. The `automaton' has two kinds of
states: Shift-And states and Shift-Add states. The Shift-And states keep
track of the pattern characters, while the Shift-Add states keep track of
the gap length between the characters. The result is a systolic array rather
than automaton; a high level description of a building block for charac-
ter pi is shown in Fig. 3.4. The �nal array is obtained by concatenating
one building block for each pattern character. We call the building blocks
counters.

1 if c < α + 1 then c ← c + 1

4 if tmp then c ← 0

... ...2 tmp ← input activated and tj ∈ [pi − δ, pi + δ]
3 if c < α + 1 or tmp then activate output

Figure 3.4: A building block for a systolic array detecting δ-matches with α-
bounded gaps.

To e�ciently implement the systolic array in sequential computer, we
need to represent each counter with as few bits as possible while still being
able to update all the counters bit-parallelly.

114 CHAPTER 3. MATCHING WITH GAPS

We reserve ` = dlog2(α + 1)e + 1 bits for each counter, and hence we
can store bw/`c counters into a single machine word. We use the value
2`−1 − (α + 1) to initialize the counters, i.e. to represent the value 0. (This
representation has been used before, e.g. in [CIN+05].) This means that the
highest bit (`th bit) of the counter becomes 1 when the counter has reached
a value α+1, i.e. the gap cannot be extended anymore. Hence the lines 3�4
of the algorithm in Fig. 3.4 can be computed bit-parallelly as

C ← C + ((∼C >> (`− 1)) & msk),

where msk selects the lowest bit of each counter. That is, we negate and
select the highest bit of each counter (shifted to the low bit positions), and
add the result to the original counters. If a counter value is less than α + 1,
then the highest bit position is not activated, and hence the counter gets
incremented by one. If the bit was activated, we e�ectively add 0 to the
counter.

To detect the δ-matching characters we need to preprocess a table B, so
that B[c] has i`th bit set to 1, i� |pi − c| ≤ δ. We can then use the plain
Shift-And step:

D′ ← ((D << `) | 1) & B[tj],

where we have reserved ` bits per character in D as well. Only the lowest
bit of each �eld has any signi�cance, the rest are only for aligning D and
C appropriately. The reason is that a state in D may be activated also if
the corresponding gap counter has not exceeded α + 1. In other words, if
the highest bit of a counter in C is not activated (the gap condition is not
violated), then the corresponding bit in D should be activated:

D ← D′ | ((∼C >> (`− 1)) & msk).

The only remaining di�culty to solve is how to reinitialize (bit-parallelly)
some subset of the counters to zero, i.e. how to implement the lines 1�2 of the
algorithm in Fig. 3.4. The bit vector D′ has value 1 in every �eld position
that survived the Shift-And step, i.e. in every �eld position that needs to be
initialized in C. Then

C ← C & ∼(D′ × ((1 << `)− 1))

C ← C | (D′ × ((1 << (`− 1))− (α + 1)))

�rst clears the corresponding counter �elds, and then copies the initial value
2`−1 − (α + 1) to all the cleared �elds.

3.10. NON-DETERMINISTIC FINITE AUTOM. FOR (δ, α)-MATCHING 115

Alg. 26 DA-NFA(T, n, P, m, δ, α).
1 ` ← dlog2(α + 1)e+ 1
2 for i ← 0 to σ − 1 do B[i] ← 0; B′[i] ← 0
3 for i ← 0 to m− 1 do B′[pi] ← B′[pi] | (1 << (i× `))
4 for i ← 0 to σ − 1 do if B′[i] 6= 0 then
5 for j ← max(0, i− δ) to min(i + δ, σ − 1) do B[j] ← B[j] | B′[i]
6 msk ← 0
7 for i ← 0 to m− 1 do msk ← msk | (1 << (i× `))
8 am ← (1 << (`− 1))− (α + 1)
9 D ← 0; C ← (am + α + 1)×msk
10 msk ← msk >> `
11 mm ← 1 << ((m− 1)× `)
12 for i ← 0 to n− 1 do
13 C ← C + ((∼C >> (`− 1)) & msk)
14 D′ ← ((D << `) | 1) & B[ti]
15 D ← D′ | ((∼C >> (`− 1)) & msk)
16 C ← C & ∼((D′ << `)−D′)
17 C ← C | (D′ × am)
18 if (D & mm) = mm then report match

This completes the algorithm. Alg. 26 gives the pseudocode. Alg. 26 runs
in O(n) worst-case time, if m(dlog2(α + 1)e + 1) ≤ w. Otherwise, several
machine words are needed to represent the search state, and the time grows
accordingly. However, by using the well-known folklore idea, it is possible
to obtain O(n) average time for long patterns not �tting into a single word
by updating only the �active� (i.e. non-zero) computer words. This works
in O(n) time on average as long as δ/(σ(1− δ/σ)α+1) = O(w/ log(α)). The
preprocessing takes O(m + (σ + δσp)dm log(α)/we) time, which is O(m +
(σ + δ min{m,σ})dm log(α)/we) in the worst case.

Improving the average-case complexity of our algorithm is based on the
idea [NR03] of combining the forward matching automaton with BNDM
[NR00]. The achieved average time is O(nα log1/ρ(m)/m) if m log(α) =
O(w), where ρ is the probability of a character match and ρ = 1 − (1 −
δ/σ)α+1. For general (large) m, we obtain O(nα log(α) log1/ρ(m)/w) time.
For m > w/ log(α) we could also use only pattern pre�xes of length w/ log(α)
in the backward search phase, resulting in O(nα log(α) log1/ρ(w/ log(α))/w)
average time, which is a slight improvement. The worst-case time of this al-
gorithm becomes quadratic. However, there are some �standard tricks� that
can be applied to combine the backward and forward (veri�cation) scans so
that either scans no text character twice [CCG+94, NR03]. These work with
our algorithm as well, letting it preserve the O(nd(m log(α))/we) worst-case
complexity.

116 CHAPTER 3. MATCHING WITH GAPS

3.11 Other models

As mentioned in the beginning of this chapter, there exist close relations be-
tween some relevant approximate matching models in music information
retrieval and molecular biology. Namely, our algorithms for the (δ, α)-
matching in the MIR setting can be straightforwardly translated (gener-
alized) to a protein search application, where the equivalent of δ-tolerance
are classes of characters, and gaps can be of di�erent length range between
any pair of pattern characters. What is more, most of our sparse dynamic
programming and bit-parallel techniques presented there can work even for
negative gaps, a problem variant which seemed hard earlier.

We have also considered a seemingly MIR speci�c problem variant, with
the extra parameter γ, being the maximum allowed sum of individual sym-
bol errors. Still, perhaps unexpectedly, we show how our techniques for
handling γ can be simply translated to the problem of matching with (arbi-
trary) gaps, character classes and up to k mismatches. We believe that our
techniques are especially valuable for the case of negative gaps.

We now describe all of these extensions in turn. Most of the extensions
apply to both Simple and the bit-parallel variants.

3.11.1 Handling character classes
In the case of character classes pi ⊂ Σ, and tj matches pi if tj ∈ pi. For the
Simple algorithms we can preprocess a table C[0 . . .m−1][0 . . . σ−1], where
C[i][c] := c ∈ pi. This requires O(σm) space and O(σ

∑
i |pi|) time, which is

attractive for small σ, such as protein alphabet. The search algorithm can
then use C to check if tj ∈ pi in O(1) time. For large alphabets we can use
e.g. hashing or binary search, to do the comparisons in O(1) or in O(log |pi|)
time, respectively.

The variant of Simple where we preprocessM is a bit more complicated.
We �rst compute lists L′[c] = {i | c ∈ pi} in the preprocessing phase. This
can be done in one linear scan over the pattern. Then list L[i] is de�ned
as L[i] = {j | tj ∈ pi}. This can be computed in one linear scan over the
text appending j into each list L[i] where i ∈ L′[tj]. The total time is then
O(nδ), where we can consider δ as the average size of the character classes.
Lists L[i] for i ∈ {0 . . . m− 1} then correspond to the set M, which is used
in the same way as previously.

The change for the bit-parallel algorithm is even simpler, and we can
easily allow character classes for both in the pattern and the text. I.e.
both the pattern and text symbols can be subsets of the alphabet, that

3.11. OTHER MODELS 117

is, pi, tj ⊆ Σ. The search algorithm does not change, we just change the
de�nition (and preprocessing) of V :

Vi,j =
{

min |p− t|, p =δ t and p ∈ pi, t ∈ tj ,
γ + 1, otherwise. (3.32)

3.11.2 Matching with general gaps
We now discuss gaps of the form g(ai, bi), where ai denotes the minimum
and bi the maximum (ai ≤ bi) gap length for the pattern position i. This
problem variant has important applications e.g. in protein searching, see
[MM91, Mye96, NR03]. General gaps were considered in [NR03, PW05].
This extension is easy to handle in all our algorithms, i.e. it is equally easy to
check if the formed gap length satis�es g(ai, bi) as it is to check if it satis�es
g(0, α). The column-wise sparse dynamic programming is a bit trickier,
but still adaptable. Yet a stronger model [MM91, Mye96] allows gaps of
negative lengths, i.e. the gap may have a form g(ai, bi) where ai < 0 (it is
also possible that bi < 0). In other words, parts of the pattern occurrence
can be overlapping in the text.

Consider �rst the situation where for each g(ai, bi): (i) ai ≥ 0; or (ii)
bi ≤ 0. In either case we have ai ≤ bi. Handling the case (i) is just what
our algorithms already do. The case (ii) is just the dual of the case (i),
and conceptually it can be handled in any of our dynamic programming
algorithms by just scanning the current row from right to left, and using
g(−bi − 2,−ai − 2) instead of g(ai, bi).

The general case where we also allow ai < 0 < bi is slightly trickier.
Basically, the only modi�cation for Alg. 17 is that we change all the con-
ditions of the form 0 ≤ g ≤ α, where g is the formed gap length for the
current position, to form ai ≤ g ≤ bi. Note that this does not require any
backtracking, even if ai < 0.

The basic Simple algorithm can be adapted as follows (we present it
for the (δ, γ, α) variant). For computing the list Li, the basic algorithm
checks if any of the text characters tj′+1 . . . tj′+α+1, for j′ ∈ Li−1 matches
pi. We modify this to check the text characters tj′+ai+1 . . . tj′+bi+1. This
clearly handles correctly both the situations bi ≤ 0 and ai < 0 < bi. The
scanning time for row i becomes now O((bi − ai + 1)|Li−1|). The average
time is preserved as O(n) if we now require that (bi − ai + 1)δ/σ < 1. The
optimization to detect and avoid overlapping text windows clearly works in
this setting as well, and hence the worst-case time remains O(n + min{(b−
a + 1)|M|,mn}), where for simplicity we have considered that the gaps are
of the same size for all rows.

118 CHAPTER 3. MATCHING WITH GAPS

As for the Simple variant that precomputes M, basically the only mod-
i�cation is that we change all the conditions of the form 0 ≤ g ≤ α, where g
is the formed gap length for the current position, to form ai ≤ g ≤ bi.
Note that this does not require any backtracking, even if ai < 0. In
other words, as we use either binary search or priority queues, we can
just change the restriction of the text area where the δ-matches should oc-
cur.

The bit-parallel algorithm (again, we talk about the (δ, γ, α) variant,
since the (δ, α) variant is easier and implies immediately) can be adapted
as follows. The basic method uses the function M to select (and minimize)
the dynamic programming matrix cells that a�ect the sum of di�erences.
Thus, the only modi�cation we need is to select the cells according to the
new gap de�nition. In fact, this implies that the gap do not have to be even
a continuous range, but any cells can be selected if M is implemented using
preprocessed tables. For negative gaps we must compute the matrix row-wise
(as opposed to the current column-wise method), since now Dw

i,j depends on
Dw

i−1,j+1, which is not available if the matrix is computed column-wise. This
also means that the cut-o� version cannot be used.

Note that this extension works with character classes just as well in all
algorithms.

3.11.3 Matching with k mismatches
The same technique we have used for handling the γ condition can be used to
solve the case where we count the number of mismatching character positions
(and still allowing gaps and δ-matching or character classes). This is more
interesting variant in the case of protein matching, for instance.

Basically, we can just assume that the di�erence counters are incre-
mented by 1 if the two symbols do not δ-match (similarly for character
classes), and by 0 otherwise, and we require that the counter must not
exceed a parameter k. All the previous time bounds are preserved if we
just replace γ with k. For example, in the bit-parallel algorithm the coun-
ters do not take O(log γ) bits anymore, but O(log k) bits instead. See also
Sect. 3.11.4, where we make this idea more explicit.

3.11.4 (δ, k∆, α)-matching
The presented algorithms can be used to solve several other problem variants
as well. One example is what we call (δ, k∆, α)-matching. In this model we
assume that γ = ∞, i.e. the δ-errors can accumulate to any value (actually

3.12. TRANSPOSITION INVARIANCE 119

the obvious upper bound is δm), but we also allow up to k∆ �outliers�
(mismatches) with the additional restriction that |pi − tj | ≤ ∆. We also
assume that δ < ∆. In other words, if δ < |pi − tj | ≤ ∆, then we increment
the outlier counter by 1. If |pi − tj | > ∆, the outlier counter is incremented
by k∆ + 1 (i.e. the pattern does not match).

Consider the bit-parallel algorithm. For the parameter k∆ we need to
preprocess V as follows:

V k∆
i,j =

0, pi =δ tj ,
1, pi 6=δ tj and pi =∆ tj ,
k∆ + 1, otherwise.

(3.33)

The computation then proceeds as before, we update the matrix Dk∆ exactly
as we did with the basic algorithm. To detect a match we just require that
the k∆ condition holds. The search complexity of the algorithm is clearly
O(nm log(k∆)/w) in the worst case. Analogously, the Simple and DP Cut-
o� algorithms can be adapted to this setting.

There are some interesting special cases of this model, such as (0, k∆, α)-
matching, and the matching with k mismatches (Sect. 3.11.3) which corre-
sponds to (δ, kσ, α)-matching.

3.12 Transposition invariance

In this section we consider transposition invariance together with (δ, α)-
matching. In this case pattern P (δ, α)-matches the text substring ti0ti1ti2
. . . tim−1 , if pj + τ =δ tij for j ∈ {0, . . . , m − 1}, where ij < ij+1, ij+1 −
ij ≤ α + 1 and τ ∈ {−σ + 1 . . . σ − 1}. I.e. the condition is the same as
before, but we now allow that the symbols can be �transposed� by some
constant value. Now we also assume that the (integer) alphabet Σ is not
arbitrary, but its symbols form a continuous range 0 . . . σ − 1. In MIR
context, transposition invariance means that the pattern and its occurrence
in text can be in di�erent keys, which makes the model much more practical
for query-by-humming applications.

3.12.1 Transposition invariant Simple
It appears that our Simple algorithm can be modi�ed to this setting rel-
atively straightforwardly. We again maintain a list Li of text positions
where the pattern pre�x p0 . . . pi matches the text substring, but this time
we must also maintain the set of possible transpositions for each such text

120 CHAPTER 3. MATCHING WITH GAPS

position. First notice that for any symbols p and t the transposition τ =
t − p makes the symbols match exactly. Taking the δ condition into ac-
count, the set of possible transpositions becomes {τ − δ . . . τ + δ}, i.e.
for any single pair of symbols there are exactly 2δ + 1 allowed transposi-
tions.

In the following we make the assumption that 2δ+1 ≤ w, where w is the
number of bits in a machine word. In MIR applications this is practically
never a restriction. We represent the set of possible transpositions as a pair
(τ, T), where τ = t − p (the base) and T is the set of the 2δ + 1 possible
o�sets to the value τ . More precisely, T is a bitvector of 2δ + 1 bits. If the
kth bit of T is set, then the transposition τ + k − δ is valid.

Assume now that we have transpositions (τ1, T1) and (τ2, T2), and we
want to compute the transposition (τ, T) that agrees with both, i.e.

(τ, T) = (τ1, T1) ∩ (τ2, T2).

If τ1 = τ2 then
(τ, T) = (τ2, T1 & T2),

where the bit-wise & operation e�ectively intersects the two sets. If
|τ1 − τ2| > 2δ, then the intersection is an empty set, and we just set T
to zero. Otherwise, if |τ1 − τ2| ≤ 2δ the intersection can be non-empty. To
compute the intersection we must �rst bring T1 and T2 into the same base.
This is easily achieved by shifting the bitvectors. Assume that τ1 < τ2.
Then

(τ, T) = (τ2, (T1 >> (τ2 − τ1)) & T2).

Symmetrically, if τ1 > τ2 we obtain

(τ, T) = (τ2, (T1 << (τ1 − τ2)) & T2).

Let us now consider extending a (possible) pre�x match. Let the current
pattern position be i, and text position j. The set of candidate transposi-
tions for this location is (tj − pi, 12δ+1) (we use exponentiation to denote
bit-repetition). This location is a pre�x match, if in the previous row there
are matching pre�xes within α-window, and their corresponding transpo-
sitions agree with the pair (tj − pi, 12δ+1). Let these transpositions be
(τ1, T1), . . . , (τk, Tk), k ≤ α + 1. Then the set of transpositions extending
the pre�x match to position (i, j) is

((tj − pi, 12δ+1) ∩ (τ1, T1)) ∪ . . . ∪ ((tj − pi, 12δ+1) ∩ . . . (τk, Tk)),

3.12. TRANSPOSITION INVARIANCE 121

Alg. 27 TI-DA-sdp-simple(T, n, P, m, δ, α).
1 tpm ← ∼0 >> (w − (2δ + 1))
2 for j ← 0 to n− 1 do
3 τ [j] ← tj − p0; T [j] ← tpm; T ′[j] ← 0; L[j] ← j
4 h ← n
5 for i ← 1 to m− 1 do
6 pn ← h; h ← 0; L[pn] = n− 1
7 for j ← 0 to pn − 1 do
8 for j′ ← L[j] + 1 to min(n− 1, L[j] + α + 1) do
9 ctpo ← tj′ − pi; ptp ← T [L[j]]
10 if |ctpo − τ [L[j]]| ≤ 2δ then
11 if τ [L[j]] < ctpo then ptp ← ptp >> (ctpo − τ [L[j]]) else
12 if τ [L[j]] > ctpo then ptp ← ptp << (τ [L[j]]− ctpo)
13 T ′[j′] ← T ′[j′] | (ptp & tpm)
14 τ ′[j′] ← ctpo
15 for j ← 0 to pn − 1 do
16 T [L[j]] ← 0
17 for j′ ← L[j] + 1 to min(L[j + 1], L[j] + α + 1) do
18 T [L[j′]] ← 0
19 if T ′[j′] 6= 0 then
20 L′[h] ← j′; h ← h + 1
21 if i = m− 1 then report match
22 swap(L, L′); swap(T , T ′); swap(τ, τ ′)

where the union ∪ is simply computed as bit-wise or of the bitvectors T , as
they are all brought to the same base by the intersection operation. Hence,
assuming that 2δ + 1 ≤ w, this computation takes O(α) time. If the re-
sulting set is non-empty, we put the position j into the list Li, just as in
the Simple algorithm without transposition invariance. Alg. 27 gives the
complete pseudocode.

The worst-case time of this algorithm is O(nmαdδ/we). As in plain Sim-
ple, computing the list Li takes O(α|Li−1|) time (assuming that dδ/we =
O(1)). However, this time the lists are longer on average. Clearly |L0| = n,
since pattern pre�x of length 1 matches every text position. Hence comput-
ing L1 costs O(αn) time, and the resulting list is of length |L1| = O(nαδ/σ),
since the probability that two intervals intersect is upper-bounded by (4δ +
1)/σ. In general, assuming that αδ/σ < 1, the ith list is of length

|Li| = O(n(αδ/σ)i).

This is exponentially decreasing with the above assumption. Thus the av-
erage time becomes O(αn).

122 CHAPTER 3. MATCHING WITH GAPS

3.12.2 Transposition invariant DP
We now present a basic dynamic programming solution that has better
worst-case complexity than the Simple algorithm. The algorithm (concep-
tually) maintains a matrix D0...m−1,0...n−1 (but only α+2 columns are active
at any time), where each Di,j is a binary vector of size 2σ + 1. If the kth
item of this vector is set, that is, i� Di,j,k = 1, then p0 . . . pi matches th . . . tj ,
for some h, with transposition k − σ. Let us de�ne a helper matrix T as

Ti,j,k = 1 | k ∈ [tj − pi + σ − δ . . . tj − pi + σ + δ].

Now D0,j is easy to compute: D0,j = T0,j . In general, Di,j,k depends on the
values of the α + 1 sized window of the previous row:

Di,j,k = 1 | Ti,j,k = 1 and ∃j′ : 0 < j − j′ ≤ α + 1 and Di−1,j′,k = 1.

The (almost) naïve implementation of the above recurrence would result in
algorithm with O(nmαδ) running time. We �rst remove the O(α) factor of
the trivial algorithm, then improve the average case, and �nally reduce the
O(δ) factor using bit-parallelism.

A trivial algorithm implementing our recurrence for Di,j,k would need
to scan α + 1 vectors from the previous row. This can be avoided by using
counters maintaining the total number of �voted� transpositions for each
(α + 1)-window:

Ci,j,k =
j∑

j′=j−α

Di,j′,k.

Thus we can rewrite our main recurrence as

Di,j,k = 1 | Ti,j,k = 1 and Ci−1,j−1,k > 0.

The counters can be easily updated in O(1) time per value by incremental
computation:

Ci,j,k = Ci−1,j,k −Di−α−1,j,k + Di,j−1,k.

This gives us O(nmδ) worst-case time. Note that only O(mασ) space is
needed for D since only the past O(α) columns are needed at any time. This
could be reduced to O(mαδ) by using the technique we used in Sect. 3.12.1.
Similarly C takes only O(mσ) space, since only one column of counters is
needed to be active at any time. Finally, T is not needed explicitly at all,
we used it only as a tool for the presentation. Alg. 28 gives the pseudocode,
omitting initialization of the arrays, which are assumed to be all zero before
the main loop. It also implements a cut-o� trick discussed next.

3.12. TRANSPOSITION INVARIANCE 123

Alg. 28 TI-DA-dp(T, n, P, m, δ, α).
1 for k ← t0 − p0 + σ − δ to k ← t0 − p0 + σ + δ do D[0][0][k] ← 1
2 top ← m− 1
3 for i ← 1 to n− 1 do
4 Dco[0] ← 1
5 for j ← 1 to top do Dco[j] ← 0
6 for k ← ti − p0 + σ − δ to k ← ti − p0 + σ + δ do D[0][i % (α + 3)][k] ← 1
7 for j ← 1 to top + 1 do
8 for k ← ti−α−2 − pj−1 + σ − δ to ti−α−2 − pj−1 + σ + δ do
9 c ← D[j − 1][(i− α− 2) % (α + 3)][k]
10 D[j − 1][(i− α− 2) % (α + 3)][k] ← 0
11 C[j − 1][k] ← C[j − 1][k]− c
12 Cco[j − 1] ← Cco[j − 1]− c
13 for k ← ti−1 − pj−1 + σ − δ to ti−1 − pj−1 + σ + δ do
14 c ← D[j − 1][(i− 1) % (α + 3)][k]
15 C[j − 1][k] ← C[j − 1][k] + c
16 Cco[j − 1] ← Cco[j − 1] + c
17 if j ≤ top then
18 for k ← ti − pj + σ − δ to ti − pj + σ − δ do
19 c ← min(1, C[j − 1][k])
20 D[j][(i− 1) % (α + 3)][k] ← c
21 Dco[j] ← Dco[j] + c
22 if j = m− 1 and Dco[j] > 0 then report match
23 while top ≥ 1 and Cco[top] = 0 and Dco[top] = 0 do top ← top − 1
24 if top < m− 1 then top ← top + 1

Cut-o�
We make the following observation: if Di...m−1,j−α...j,k = 0, for some i, j
and all k, then Di+1...m−1,j+1,k = 0. This is because there is no way the
recurrence can introduce any other value for those matrix cells. In other
words, if p0 . . . pi does not (δ, α)-match th . . . tj−j′ for any j′ = 0 . . . α, then
the match at the position j + 1 cannot be extended to p0 . . . pi+1. This can
be utilized by keeping track of the highest row number top of the current
column j such that Dtop+1...m−1,j−α...j = 0, and computing the next column
only up to row top+1. For this sake we maintain an array Cco so that Ccoi,j

gives the total number of �voted� transpositions for the last (α+1)-window:

Ccoi,j =
∑

k

Ci,j,k.

This is again trivial to incrementally maintain in O(1) time per computed
D value. Hence after the row top for the column j is processed, the new
value of top is computed as

top = argmini{Ccoi...top,j = 0}.

124 CHAPTER 3. MATCHING WITH GAPS

Now consider the average time of this algorithm. Computing a single
cell Di,j costs O(δ) time. Maintaining top costs only O(n) time in total,
since it can be incremented only by one per text symbol, and the number of
decrements cannot be larger than the number of increments. The average
time of this algorithm also depends on the average value of top, i.e. the total
time is O(n avg(top) δ). For p0 the probability of a match for any text
position is obviously 1 (and top is at least 1). For rows i > 0 the probability
that Ti,j intersects with Di−1,j−1...j−α−1 is upper bounded by

ρ = 1− (1− ((4δ + 1)/σ))α+1.

Hence the expected length of a pre�x match is at most
∞∑

i=0

ρi =
1

(1− 4δ+1
σ)α+1

,

i.e. avg(top) = O
(

1
(1−δ/σ)α+1

)
, and the average time gets O

(
n δ

(1−δ/σ)α+1

)
.

It is easy to show that this is O
(
n δ

1−δ(α+1)/σ

)
if α + 1 < σ/δ.

Bit-parallel algorithm
We note that the O(δ) factor can be easily reduced to O(dδ log(α)/we),
which is practically O(1) in MIR applications. To see this, note that the
counter values cannot exceed α+1, so we can pack O(w/ log α) counters into
a single computer word. All the inner loops (involving 2δ +1 iterations) can
then be computed parallelly, updating O(w/ log α) counters in O(1) time.
The only non-trivial detail is the computation of minima of two sets of
counters (parallelization of the line 19 of Alg. 28), but the solution exists
[PS80], and is reasonably well-known. Note that for realistic assumptions
(for MIR data) of (4δ +1)α < cσ, for some constant c < 1, and for δ log α =
O(w), this variant achieves O(n) time on average. However, in practice δ is
often so small that the bene�t of this parallelization is negligible, if any.

3.13 Experimental results for (δ, α)-matching
and related problems

In this section we present the results of experiments intended to evaluate
the performance of our algorithms for (δ, α)-matching, (δ, α)-matching with
transposition invariance, and matching with character classes and general
bounded gaps. The experiments were run on Pentium4 2GHz with 512MB

3.13. EXP. RES. FOR (δ, α)-MATCHING AND RELATED PROBLEMS 125

of RAM, running GNU/Linux 2.4.18 operating system. All the algorithms
were implemented in C and compiled with icc 7.0.

We �rst experimented with (δ, α)-matching, which is an important appli-
cation in music information retrieval. For the text we used a concatenation
of 7543 music pieces, obtained by extracting the pitch values from MIDI
�les. The total length is 1 828 089 bytes. The pitch values are in the range
[0 . . . 127]. This data is far from random; the six most frequent pitch values
occur 915 082 times, i.e. they cover about 50% of the whole text, and the
total number of di�erent pitch values is just 55. A set of 100 patterns was
randomly extracted from the text. Each pattern was then searched for sep-
arately, and we report the average user times. Fig. 3.5 shows the timings
for di�erent pattern lengths. The timings are for the following algorithms:

• DP: Plain Dynamic Programming algorithm [CIM+02],
• DP Cut-o�: �Cut-o�� version of DP (as in [CCF05b]),
• SDP RW: Basic Row-Wise Sparse Dynamic Programming,
• SDP RW fast: Binary search version of SDP,
• SDP RW fast PP: linear preprocessing time variant of SDP RW fast

(Alg. 17),
• SDP CW: Column-Wise Sparse Dynamic Programming (Alg. 18),
• Simple: Simple algorithm (Alg. 19),
• BMH+Simple: BMH followed by Simple algorithm (Alg. 20),
• BP Cut-o�: Bit-Parallel Dynamic Programming [FG06c],
• NFA α: Non-deterministic �nite automaton, forward matching variant

[NR03], using O(α) bits per symbol,
• NFA log(α): Non-deterministic �nite automaton, forward matching

variant (Alg. 26), using O(log(α)) bits per symbol.
We also implemented the SDP RW variant with O(

√
δn) worst case prepro-

cessing time, but this was not competitive in practice, so we omit the plots.
SDP is clearly better than DP, but both show the dependence on m. The

�cut-o�� variants remove this dependence. The linear time preprocessing
variant of the SDP �cut-o�� is always slower than the plain version. This is
due to the small e�ective alphabet size of the MIDI �le. For large alphabets
with �at distribution the linear time preprocessing variant quickly becomes
faster as m (and hence the pattern alphabet) increases. The column-wise
SDP algorithm and especially Simple algorithm are very e�cient, beating
everything else if δ and α are reasonably small. For very small δ and α and
moderate m the BMH variant of Simple is even faster. For large (δ, α) the
di�erences between the algorithms become smaller. The reason is that a
large fraction of the text begins to match the pattern. However, this means
that these large parameter values are less interesting for this application.

126 CHAPTER 3. MATCHING WITH GAPS

 0.01

 0.1

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

tim
e

(s
)

m

(1,2)-matching

 0.1

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

tim
e

(s
)

m

(2,4)-matching

 0.01

 0.1

 1 2 3 4 5 6 7 8

tim
e

(s
)

α

m=16, (1,α)-matching

 0.1

 1 2 3 4 5 6 7 8

tim
e

(s
)

α

m=32, (2,α)-matching

DP
DP Cut-off

SDP RW
SDP RW fast

SDP RW fast PP
SDP CW

Simple
BMH+Simple

BP Cut-off
NFA α

NFA log(α)

Figure 3.5: Running times for (δ, α)-matching, in seconds, for m = 8 . . . 128 (top)
and for α = 1 . . . 8 (bottom). Note the logarithmic scale

The bit-parallel algorithm [NR03] is competitive but su�ers from requiring
more bits than �t into a single machine word, yet Alg. 26 is even slower, be-
sides having more e�cient packing. This is attributed to the additional (con-
stant time per text character) overhead due to the more complex packing.

3.13.1 Transposition invariance
Next, we experimented with the transposition invariant algorithms. The
following algorithms were tested:

• BF-Simple: Plain Simple executed O(σ) times,
• Simple: Transposition invariant Simple (Alg. 27),
• DP: (Transposition invariant) Dynamic Programming algorithm,
• DP Cut-o�: �Cut-o�� version of DP (Alg. 28).

The results are shown in Fig. 3.6. In this case Simple is again clear winner,
despite of the theoretical superiority of DP Cut-o�. For large α DP (Cut-

3.13. EXP. RES. FOR (δ, α)-MATCHING AND RELATED PROBLEMS 127

 0.1

 1

 10

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

tim
e

(s
)

m

Transposition invariant (1,2)-matching

 0.1

 1

 10

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

tim
e

(s
)

m

Transposition invariant (2,2)-matching

 0.1

 1

 10

 1 2 3 4 5 6 7 8

tim
e

(s
)

α

m=16, Transposition invariant (1,α)-matching

 0.1

 1

 10

 1 2 3 4 5 6 7 8

tim
e

(s
)

α

m=32, Transposition invariant (2,α)-matching

BF-Simple Simple DP Cut-off DP

Figure 3.6: Running times for transposition invariant (δ, α)-matching, in seconds,
for m = 8 . . . 128 (top) and for α = 1 . . . 8 (bottom). Note the logarithmic scale

o�) would eventually beat Simple, but in practical applications such large
parameters are not interesting.

3.13.2 PROSITE patterns
We also ran preliminary experiments on searching PROSITE patterns from
a 5MB �le of concatenated proteins. The PROSITE patterns include char-
acter classes and general bounded gaps. Searching 1323 patterns took about
0.038 seconds per pattern with Simple, and about 0.035 seconds with NFA.
Searching only the short enough patterns that can �t into a single computer
word (and hence using specialized implementation), the NFA times drops to
about 0.025 seconds. However, we did not implement the backward search
version, which is reported to be substantially faster in most cases [NR03]. Fi-
nally, note that the time for Simple would be una�ected even if the gaps were
negative, since only the magnitude of the gap length a�ect the running time.

128 CHAPTER 3. MATCHING WITH GAPS

3.14 Experimental results for (δ, γ, α)-matching

We have also run experiments to evaluate the performance of our algorithms
for the (δ, γ, α)-matching problem. This time, the test machine was a Pen-
tium4 2.4GHz with 512MB of RAM, running GNU/Linux 2.4.20 operating
system. All the algorithms were implemented in C, and compiled with icc
9.0.

As the text, we again used the 1.8MB MIDI �le (pitches only). Like pre-
viously, 100 patterns were randomly extracted from the text. Each pattern
was then searched for separately, and we report the average user times.

We experimented with the following algorithms:
• BP Cut-o�: Bit-parallel dynamic programming with cut-o�, Alg. 25

(without the lazy preprocessing),
• BP Filter: The (δ, α)-matching version of BP Cut-o� [FG06c] used as

a �lter, and Alg. 16 used for the veri�cations,
• DP Cut-o�: Dynamic programming with cut-o�, Alg. 16,
• Simple: Simple sparse dynamic programming, Alg. 21.

We omitted the results for basic dynamic programming based algorithms,
since these are orders of magnitude slower. Fig. 3.7 shows the timings.
Simple is the clear winner in most of the cases. BP Cut-o� su�ers from
the large preprocessing cost, especially if the pattern alphabet is large. The
same is true for the BP Filter, but this is more competitive in MIDI data,
where the pattern alphabet is e�ectively very small.

3.14. EXPERIMENTAL RESULTS FOR (δ, γ, α)-MATCHING 129

 0.001

 0.01

 0.1

 1

 8 16 24 32

tim
e

(s
)

m

(1,1,1)-matching, random data

BP Cut-off
BP Filter

DP Cut-off
Simple

 0.001

 0.01

 0.1

 1

 8 16 24 32

tim
e

(s
)

m

(1,4,1)-matching, random data

BP Cut-off
BP Filter

DP Cut-off
Simple

 0.01

 0.1

 1

 8 16 24 32

tim
e

(s
)

m

(2,8,2)-matching, random data

BP Cut-off
BP Filter

DP Cut-off
Simple

 0.01

 0.1

 1

 8 16 24 32

tim
e

(s
)

m

(4,16,2)-matching, random data

BP Cut-off
BP Filter

DP Cut-off
Simple

 0.01

 0.1

 1

 8 16 24 32

tim
e

(s
)

m

(1,1,1)-matching, MIDI

BP Cut-off
BP Filter

DP Cut-off
Simple

 0.01

 0.1

 1

 8 16 24 32

tim
e

(s
)

m

(1,4,1)-matching, MIDI

BP Cut-off
BP Filter

DP Cut-off
Simple

 0.01

 0.1

 1

 8 16 24 32

tim
e

(s
)

m

(2,8,2)-matching, MIDI

BP Cut-off
BP Filter

DP Cut-off
Simple

 0.1

 1

 8 16 24 32

tim
e

(s
)

m

(4,16,2)-matching, MIDI

BP Cut-off
BP Filter

DP Cut-off
Simple

Figure 3.7: Running times for (δ, γ, α)-matching, in seconds, for m = 8 . . . 32. Note
the logarithmic scale

Chapter 4

Searching in compressed domain

The task of compressed pattern matching [AB92] is to report all the occur-
rences of a given pattern P in a text T available in compressed form. Certain
compression algorithms allow for searching without prior decoding, which is
practical if the search is fast enough.

Some compression algorithms can be adapted easier to the search sce-
nario, while dealing with others is mainly a theoretical challenge. In this
chapter we brie�y present the main achievements in searching over com-
pressed text, the inherent problems and ideas to overcome them, but more
attention we pay for practical methods, discussing compression possibilities
in inverted indexes, and numerous byte codes designed for high compression
ratios, random access and search with pattern shift capabilities at the same
time.

The price we usually pay for those spectacular achievements is some
assumption on the underlying text. Our contribution [FG06d] into the
�eld of searching in compressed domain is demonstrating how simply and
still e�ciently byte codes can be used in a scheme supporting searches
for an arbitrary pattern in an arbitrary text. We also show how to im-
prove (slightly) existing byte codes, which again can work with arbitrary
text, if only the text is static [Gra08]. On the other side of the spectrum,
for word-based schemes, we showed how to achieve competitive text com-
pression ratios, for plain text [SGD05], or for XML [SGS08, SSG08], via a
careful design of a preprocessor. Although in those cases compression was
of primary concern, both schemes can be made searchable with relatively
little e�ort, what was demonstrated practically in the XML-oriented case
[SS07].

130

4.1. MOTIVATION AND BRIEF OVERVIEW OF THE AREA 131

4.1 Motivation and brief overview of the area

Takeda et al. [TSM+01] distinguish between two goals of compressed pattern
search. The �rst, easier, goal is to perform faster search over a compressed
�le in comparison to a plain decompression followed by an ordinary search
(using some of the well-known techniques). This goal is important when
storage saving has priority over search speed, which can be relevant e.g. for
mobile devices with a relatively small Flash or disk memory. The second
goal is to be able to run the search over a compressed �le in less time than it
would take to search over the uncompressed �le. Achieving this goal is very
attractive since it means that compression is then used not only to reduce
the �le size (as expected), but also to make searches faster. Fortunately,
there are compression-and-search algorithms that achieve also the second
goal, at least for some text characteristics and some query types. There are
two reasons for which searching in the compressed domain can be faster than
searching in an uncompressed text. The �rst is that compression reduces the
I/O time. This e�ect can be crucial on very redundant texts (e.g. some XML
databases) since disk access takes at least �ve orders of magnitude more time
than main memory access time, on a typical computer architecture. Even
if the whole text resides in main memory, a similar phenomenon can be
noticed between various levels of the memory hierarchy (e.g., large but slow
RAM, much smaller but much faster L2 CPU cache, and even smaller and
even faster L1 CPU cache), also bene�cial to compressed data, but this time
the speed di�erence is much less drastic. The second reason for (potentially)
faster search in compressed data is that, surprisingly perhaps, sometimes it
requires less CPU work, e.g. fewer character comparisons.

There are basically two scenarios for compressed pattern matching. In
one of them it is assumed that the text is segmented into words, i.e. short
strings with separators (usually blanks) between them. The pattern is also
assumed to be a phrase of one or more words, and the matches need to be
at word boundaries only. For example, if the pattern is �shaggy dog�, then
a subsequence �shaggy dogs� from T will not be reported as a match. This
is called word-based searching.

Another scenario is more �exible: it does not assume anything about the
text or the pattern, except for both being arbitrary sequences of characters
over a known (and usually �nite and indexed) alphabet. We are going to
take a closer look at the speci�cs of both approaches.

The word-based orientation is widely used in inverted indexes [Knu73,
WMB99], classic data structures to index natural language texts, and nowa-
days belonging to fundamental mechanisms of any web search engine. An

132 CHAPTER 4. SEARCHING IN COMPRESSED DOMAIN

inverted index is composed of two elements: the vocabulary (the set of dis-
tinct words) and the occurrence lists (also called posting lists). For large
texts, the vocabulary takes only a small fraction of the whole index, which
is no surprise in the light of the well-known empirical Heaps' law [Hea78],
which claims that the vocabulary of a text of n words is of O(nβ) size, where
β is usually between 0.4 and 0.6 in practice. Navarro ([Nav98, Sect. 2.10, p.
24]) reports that the vocabulary for 1GB of the TREC collection [Har95] oc-
cupied only 5MB of memory. The occurrence lists, however, are much more
demanding. They store, usually in the increasing order, the positions of a
given word's occurrences in the text. A substantial part of any real NL text
is used by stopwords, that is, words with mainly syntactical purpose (English
examples are �a�, �the�, �of� etc.). Stopwords are also called function words
[MNF58], and in the cited work they comprise articles, prepositions, pro-
nouns, numbers, conjunctions and auxiliary verbs. Sometimes, the meaning
of a stopword is understood broader, e.g. in Onix Text Retrieval Toolkit
(http://www.lextek.com/manuals/onix/stopwords1.html) some popular (but
non-auxiliary) verbs (e.g. �know�) and adjectives (e.g. �young�), and their re-
lated grammar forms (e.g. �knows�, �known�, �younger�) are also considered
stopwords (in total, their list contains 429 English words). From a pragmatic
point, a stopword can be any word that does not convey enough content to
appear alone in a query. Depending on the de�nition and the text, stopwords
use from about 40% to 50% of all words in a text �le [ANZ97, NMN+00].

Still, even if the text is pruned from stopwords, the occurrence lists use
about 35% of the original text size, as shown on several large text collections,
using Igrep software package [ANZ97]. This is quite much, so a compromise
idea is to use block addressing instead of exact references to word occurrences.
This concept was used for the �rst time in Glimpse [MW94]. More precisely,
the underlying idea of Glimpse is to partition a large text collection into
equal blocks (of size, e.g., several hundred kilobytes) and for each word from
the vocabulary keep only the list of blocks in which the given word occurs
(no matter whether once or many times). The exact word positions are
not stored in the index. If the search pattern is a phrase containing several
words, the search means to retrieve the appropriate lists, intersect them, and
�nally perform a linear scan over the resulting blocks (if any left); how to
perform the intersections e�ciently is still a research problem [ST07]. The
number of blocks can be limited to e.g. 256, to store block numbers in single
bytes. The block sizes depend then on the overall text size. If the �text�
to index is actually a �le system or a web graph, it is more convenient to
replace �blocks� with individual �les, e.g. single HTML documents. Glimpse
is much slower than Igrep but consumes typically only 2�4% of the text

4.1. MOTIVATION AND BRIEF OVERVIEW OF THE AREA 133

[MW94], unfortunately its e�ectiveness deteriorates on huge �les. Baeza-
Yates and Navarro proved [BYN00] that a block addressing index may yield
both sublinear space overhead and sublinear query time, on average. Still,
of course, the original text cannot be discarded.

A number of techniques to compress inverted indexes (in particular,
block addressing based ones) have been presented in the literature [MB95,
NMN+00, TS08]. The main problem is how to represent the occurrence lists
both succinctly and with support for fast access to the block numbers stored
on them. The mechanisms to reach those contradictory goals are compact
gap (i.e., di�erence) encoding, direct access to a list in regular intervals
[WMB99], and complemented lists [NMN+00], i.e. storing a list of blocks
not containing a given word, if this word occurs in more than a half of the
blocks. Also, the word vocabulary can be compressed, making use of e.g.
frequent digrams or common pre�xes of words.

An important advantage of word-based inverted indexes is that they
support approximate queries (and some other non-trivial queries) relatively
easily [NMN+00]. The basic idea for resolving approximate queries is search
for all the possible distortions, within the speci�ed allowed error level, of a
given phrase, which still result in a sequence of words from the vocabulary.
Then, all those potential phrases are sought for in their respective blocks,
but still some optimizations are possible to make this search faster.

Naturally, word-based compression techniques are also used to compress
the text without an index [MNZBY00]. In most such schemes, a codebook
over the vocabulary is built, with codewords usually taking an integer num-
ber of bytes (not bits), and the text words are replaced by their correspond-
ing codewords [BFNP07]. Using a byte- rather than bit-oriented approach
makes a search over the compressed text both simpler and faster. In the rest
of this chapter we focus on searching a compressed text without an index.

To sum up, word-based compression is very practical, as long as it can
be applied: its mechanism is simple, the search is fast, the compressed text
together with its word dictionary takes only about 30% of the original rep-
resentation [BFNP07], and more advanced queries can also be handled with
relatively little di�culty. The problem is, however, that the assumption of
�text� made up of �words� separated with spaces, so natural and convenient
for Western languages (e.g., English, French), is inappropriate for oriental
languages (e.g., Chinese, Korean), DNA and protein sequences, or structured
music �les (MIDI). Moreover, word-based approach is not perfect also for
some European languages: agglutinative ones, like Finnish or Hungarian, or
in�ecting ones, like Polish or Russian. For the �rst group of languages, the
vocabulary is potentially in�nite, and for the second group, users are often

134 CHAPTER 4. SEARCHING IN COMPRESSED DOMAIN

interested in �nding any of several grammar forms of a given word (usually
having a common pre�x). It should be thus clear that there exist important
applications for compression algorithms that allow searching directly in the
compressed stream, without assuming practically anything about the data.
The algorithm we present in Section 4.3 belongs to this category.

Let us report brie�y what has been done is full-text search-supporting
compression. One of the �rst algorithms of this kind was given by Manber
in 1994 [Man94]. It replaces the most frequent pairs of consecutive charac-
ters (bytes) in the text with a byte that does not occur in that data (for
e.g. plain ASCII English text it poses no technical problems as more than
128 byte values are never used and can thus be given special meaning).
Thanks to a careful selection of the replacement set, which does not allow
for overlapping pairs, the search mechanism is very simple but the com-
pression ratio is weak, about 70% for English texts. A similar idea, called
byte-pair encoding (BPE), was presented in the same year by Gage [Gag94],
and it was devised with compression in mind only. BPE is Manber's idea
taken to the extreme: the most frequent pairs are encoded one-by-one, and a
given �new� symbol may be compound of symbols which are not taken from
the original alphabet but are sequences already. Gage's implementation can
be extremely slow in compressing the text, but Takeda et al. [TSM+01]
modi�ed the algorithm in order to make compression fast, for the price of
some compression loss. Still, the compression ratio for English is slightly
less than 60% in their experiments, which is quite acceptable for full-text
schemes. Takeda et al. show several ways to perform exact pattern search
directly in BPE-compressed text, for example by modifying the transition
table in the KMP algorithm. Interestingly, also a word-based version of
BPE was presented [Wan03], with 25�30% compression ratio, but so far no
search scheme for it has been proposed.

Another possibility is searching in run-length encoded texts [AB92],
where also approximate matching algorithms exist [ALS99, MNU03, ALM02].
This line of research has limited applications since the run-length encoding
(RLE), applied as a single compression algorithm, is hardly ever useful (e.g.,
doesn't help on NL texts, DNA, music databases etc.). A natural applica-
tion of RLE are black-and-white images, e.g. faxed documents, which tend
to contain long runs of white pixels (background). Also searching in two-
dimensional run-length encoded text has been considered, with the optimal
time complexity, O(u), where u is the length of the compressed text, achieved
in [ABF94].

The Hu�man compression [Huf52], and variants of, have been considered
many times (e.g., [KS05, TSM+01, TMK+02, FT03]) as a text representa-

4.2. SEARCH-SUPPORTING CODES FOR LARGE ALPHABETS 135

tion for which direct searching is possible. In this case, searching is fairly
straightforward, but requires the whole compressed text being scanned to
keep track of the codeword boundaries. In other words, it seems hard to
devise a search algorithm for Hu�man stream which would enable skipping
over parts of the stream in the manner of the Boyer�Moore family of algo-
rithms.

Another line of research is searching over Lempel�Ziv [ZL77, ZL78] com-
pressed data (e.g., [KTSA99, NT00]). Those algorithms provide better com-
pression ratios than Hu�man but the search is di�cult and its speedup
over the naïve ��rst decompress, then search� approach is at best mod-
erate (about two-fold, i.e. it satis�es the �rst goal according to the cited
work by Takeda et al. [TSM+01], but not the second [NT00]). Interest-
ingly, also approximate matching in Lempel�Ziv compressed texts has been
considered, again reaching the �rst goal in practice [KNU03]. On the the-
oretical front, Bille et al. recently showed that any matching algorithm for
the Levenshtein distance can be plugged into their scheme for searching in
the LZ78-compressed text, and also a simple time-space tradeo� is possible
[BFG07].

There are also some more exotic compression schemes, like using an-
tidictionaries [CMRS98] or SEQUITUR [NMW97] which infers grammar
rules from the given text, for which search schemes have been devised
[STSA99, MHM+01], but we don't �nd them practical for some reasons.
A decade ago Rytter presented a survey [Ryt99] of theoretical one- and
two-dimensional algorithms for compressed matching and related problems,
including, among others, RLE, antidictionaries and LZ approaches.

4.2 Search-supporting codes for large alphabets

In this section we present several compression codes which proved their
usefulness, both in theory and in practice, for word-based compression sup-
porting fast search [BFNP07]. What is less obvious is that most of those
codes can also be adapted to full-text search requirements [FG06d], which
is the topic of the algorithm we present in the next section. Still, indis-
putably, those codes require large alphabets to deal with. Examples of large
alphabets are: Unicode (a natural choice if e.g. text in one of many Asian
languages is to be handled), the vocabulary prebuilt for a given natural lan-
guage (typically, tens of thousands of words, i.e. symbols in the alphabet),
the set of distinct words in a large NL text (again, tens of thousands of
symbols, or more), the set of distinct words and markup tags in a large

136 CHAPTER 4. SEARCHING IN COMPRESSED DOMAIN

and diverse XML collection, the set of distinct q-grams in a large text, and
so on.

Throughout this section we however assume that those codes will be used
on words. It is worth to realize at the start that natural language texts are
composed of words and separators between them, so a basic question is how
to e�ciently handle both words and separators. It is possible to use disjoint
alphabets and unrelentingly switch between them. A better practical choice
is however the method called spaceless words [MNZBY00], which assumes
that most words are followed by a single space. If this is the case, just the
word is encoded. If not (for example, the separator is a comma followed by
a space), then the separator is encoded just after the word. At the decoding
time, the omitted spaces are inserted after reconstructed words, unless the
next codeword corresponds to a separator.

Word-based compression is attractive since it emulates, in a way, higher-
order literal compression, i.e., can attain signi�cant compression ratios,
while at the same time being simpler to implement and less memory con-
suming, as the compression model is not polluted with hardly useful con-
texts. But perhaps the most important feature of word-based compression
is that even its simplest, static order-0 implementation wins in compres-
sion ratio with popular algorithms from Lempel�Ziv family. The property
of being static implies a possibility of fast and simple search over a text
compressed in that way, and also makes direct access to the text possi-
ble (e.g., for decoding and displaying only an excerpt of text from a mid-
dle).

The most natural choice for static order-0 compression is Hu�man coding
[Mof89]. It achieves less than 30% of compression ratio, but the search
or decompression are not that very fast because of the need of bit-wise
manipulations. A more practical idea was used by de Moura et al. [MNZ97].
They replaced the classic, binary Hu�man with 256-ary Hu�man. In other
words, all Hu�man codewords had either 1 bytes, or 2 bytes, etc. This way,
decompression got much simpler but searching in the compressed data was
still unable to perform any skips over text characters (bytes). The next
modi�cation, from the same work, was therefore a tagged Hu�man code, in
which 7 out of 8 bits in each 256-ary Hu�man codeword byte carried the
actual information about the symbol, and 1 bit was used as a �ag to signal
the �rst byte of a codeword. Thanks to it, the tagged Hu�man code can be
accessed in any position, even if the access point is in the middle of some
codeword (examining at most a few following bytes is enough to detect a
codeword boundary). Moreover, this scheme enables searching with BM-
like algorithms, without any risk of �nding false matches, as opposed to

4.2. SEARCH-SUPPORTING CODES FOR LARGE ALPHABETS 137

plain 256-ary Hu�man. The price for all those desirable properties is some
deterioration in the compression ratio, to about 35%.

Interestingly, in the family of byte codes with one bit per byte spent
for a �ag, the tagged Hu�man is not optimal. To notice it, it is enough to
make a trivial change to the scheme: use a �ag to denote the last, not the
�rst, byte of each codeword. In this way, the �ag bits in the stream are
enough to make the code a pre�x one. Consequently, all the combinations
on the �message� bits are valid and should be used, which stands in contrast
to the tagged Hu�man. This idea was presented and analyzed in 2003
[BINP03], under the name of end-tagged dense code (ETDC). Indeed, this
code is �denser� than tagged Hu�man, but also amazingly simple and easy
to implement. The compression ratio improves to 32�33%. Note that what
is needed to generate the code is only the list of words ordered by frequency;
the frequencies themselves are not needed. As an interesting historical note,
we cite Culpepper and Mo�at (2005) [CM05], on ETDC: The exact origins
of the basic method are unclear, but it has been in use in applications for
more than a decade, including both research and commercial text retrieval
systems to represent the document identi�ers in inverted indexes.

Traditionally, the �ag is the highest bit in a byte (although this is purely
conventional) in the described schemes. The solution in ETDC thus means
that bytes in the range from 128 to 255 end a codeword, while bytes lower
than 128 do not end the codeword. The former values can be called stoppers
and the latter continuers. The ranges for stoppers and continuers must
be disjoint, of course. What is important, however, is that the value 128
does not have to be the threshold. In general, we can say about having s
stoppers and c continuers, with the only condition that s + c = 256. This
generalization was proposed in [BFNE03] under the name of a (s, c)-dense
code, or shortly (s, c)-DC. Obviously, ETDC is (128, 128)-DC. The authors
also use the name (s, c) stop-cont code for a code with each codeword being
a sequence of zero or more values from 0 to c − 1 terminated with exactly
one value from c to s + c− 1. In fact, it can be of some value to generalize
the (s, c)-DC de�nition given above with replacing the condition s+c = 256
with s+c = 2b, where b is any positive integer (perhaps 4 might be useful for
small alphabets, or 16 for huge alphabets), but in the following we assume
byte-oriented codes, as most practical, which corresponds to setting b = 8.

The (s, c)-DC idea was discovered a year earlier (in 2002) by Rautio et
al. [RTT02], but their search techniques were di�erent than in [BFNE03]
and were based on splitting each codeword into two parts sent into separate
streams. For typical distributions, s should be greater than c. For example
in the experiments in [BFNP07], the optimal s for several large collections

138 CHAPTER 4. SEARCHING IN COMPRESSED DOMAIN

of English text varies from 188 to 198, leading to at least 0.5% compression
improvement with respect to ETDC. In fact, (s, c)-DC loses very little to
plain (non-tagged) 256-ary Hu�man, about 0.2% of the size of the original
text. Still, the loss to order-0 entropy in the word-based model, which can
be achieved by arithmetic coding, is greater, about 4�5%. Unfortunately, it
seems impossible to e�ciently search in an arithmetically encoded stream.
Searching in (s, c)-DC is as easy as in its predecessors, tagged Hu�man and
ETDC, since (s, c)-DC is also a pre�x byte-oriented code, supporting fast
Boyer�Moore like searching strategies, increasing their speed with growing
pattern length (measured in bytes of the compressed pattern representation).

An interesting question concerns how to �nd the optimal s value (while
c = 256 − s is then obtained automatically). The code allows for s 1-byte
codewords, sc 2-byte codewords, sc2 3-byte codewords, and so on. Setting
a small s implies that the amount of the alphabet symbols (i.e. words, typi-
cally) encoded with only 1 byte, will be strongly limited. On the other hand,
in such a case the number of symbols represented with 2 bytes (and not 3 or
more bytes) will be much larger than for a case of s being signi�cantly larger.
Clearly then, the best choice depends on the symbol probability distribu-
tion. The problem can be expressed as �nding the argument s minimizing
the resulting compression ratio (or compressed text size). Basically, two
simple strategies can be used to �nd the optimal s. One assumes that the
compressed text size as a function of s is a convex function and then a single
local minimum exists, which can be found with binary searching. The other
strategy is brute-force checking all possible 255 values of s. Interestingly, for
real distributions the function is practically always convex ([BFNP07, Sect
4.3] contains intuitive arguments why it happen so, assuming that Heaps'
and Zipf's laws hold), but it is possible to construct an arti�cial distribu-
tion with more than one minimum. An example of such a function, with
two local minima, is given in [BFNP07]. From a practical point, the binary
search strategy seems safe, especially that even if a function has more then
one minimum, they probably yield almost identical compression.

The search in (s, c)-DC (including ETDC) is slightly di�erent than in
tagged Hu�man. The latter algorithm uses tag bits to signal the codeword
beginnings, i.e., it is impossible to have the pattern misaligned. In this
way, false matches are impossible with this algorithm. Now we are going
to present on an example what can happen with (s, c)-DC. Let s = 156,
i.e. the values [0 . . . 99] correspond to continuers, and the values [100 . . . 255]
represent stoppers. Imagine that the pattern is a single word and is encoded
as a pair of bytes (50, 200). Now, let us have a piece of encoded text:

. . . 35 50 200 . . . 187 50 200 . . .

4.2. SEARCH-SUPPORTING CODES FOR LARGE ALPHABETS 139

Seemingly, there are two matches in the shown piece of text, and both will
be found by e.g. BMH algorithm, but the �rst of them should be rejected as
being a false one. Indeed, this can be found with peeking just the previous
byte. In the �rst case, the examined value is 35, i.e. belongs to continuers,
which means that the found �match� was actually a su�x of some 3-byte or
longer codeword. In the second case, the previous byte is 187, i.e. a stopper,
which means that found pattern sequence starts at a codeword boundary,
i.e. must be a genuine match. This nuisance is very little in fact, since the
extra checks are needed only at potential match positions, which are rare.

Variable-length byte coding on words is also often used for sole text
compression. One of the most successful examples of this approach is the
word replacing transform (WRT) by Skibi«ski et al. [SGD05]. The scheme
assumes a static dictionary shared by the compressor and the decompressor
(or, in other words, by the sender and the receiver), and words not found
in the dictionary are written verbatim. The byte-orientedness of the encod-
ing is needed not for searching (which is not supported in WRT, although
this option seems possible) but rather for more e�cient further compres-
sion with general-purpose algorithms. It appears that stronger compressors,
e.g., from the PPM family [CW84, Shk02], work better with less dense WRT
coding, and weaker compressors, e.g. De�ate [Deu96] from the LZ77 family,
prefer denser coding. To address this phenomenon, the authors of the cited
work devised and implemented two variants of WRT, reaching up to 14%
improvement in the latter case, with gzip, when compared to the previous
leader, StarNT [SZM03].

Byte encoding on the word level is also one of the main principles in the
XML compressor XWRT (XML word replacing transform) [SGS06, SGS07,
SGS08, SSG08]. Together with separating di�erent elements and content
types into multiple streams, and dedicated encoding of numbers and dates,
this idea helps XWRT achieve a little advantage over the previous state-
of-the-art compressor, SCMPPM [AdlFN05, ANdlF07], while being also by
30% faster in the compression, and as much as nine times faster in the decom-
pression [SGS08]. Tuning the transform for a stronger back-end compressor
(from PPM family) lets the advantage in compression over the competition
grow even more, but for the price of making the algorithm symmetric in
speed [SSG08].

It seems very hard to improve the compression ratio of (s, c)-DC while
keeping its advantages like byte-orientedness and fast search support. For-
tunately, it is possible to weaken the input assumptions without losing
most of the advantages of the code but improving the compression signi�-
cantly. The idea, used in the scheme called pair-based end-tagged dense code

140 CHAPTER 4. SEARCHING IN COMPRESSED DOMAIN

(PETDC) [BFNP06], was to treat frequent pairs of adjacent words as indi-
vidual symbols. PETDC can be classi�ed as a variable-to-variable length
code, since the input symbols vary in their length (i.e., the number of com-
ponent words � one or two) and also vary in the output codeword length.
Searching for a pattern in this scheme may bring some problems at the en-
coded sequence boundaries (since a word can occur alone or be a pre�x or
a su�x of possibly many word pairs), but this can be solved by referring
to a multiple search algorithm. The compression ratio, on standard large
English text collections, gets around 28%, in contrast to 32�33% achieved by
the original ETDC. The 28% ratio is (accidentally) very similar to order-0
entropy in the word model. The reported compression speed [BFNP06] is
however about 2.5 times worse than for ETDC, but in the decompression
the loss is only about 20%. We are not aware of a similar modi�cation for
the (s, c)-DC code, but it is likely that the compression improvement would
be very slight.

Another possibility to generate dense codes was pointed out by Culpep-
per and Mo�at [CM05]. In their solution, the �rst byte in a codeword keeps
information about the length of the whole codeword. Unfortunately, this
idea poses trouble with e�cient search [CM06].

All the described so far byte codes are static, i.e. the correspondence
between a symbol and its codeword is unchanged during the compression
process. This is very convenient and makes search over the compressed text
both simple and fast. On the other hand, adaptive compression methods
have other advantages: the text can be compressed in one pass (as opposed
to static compressors which need a preliminary pass over the whole text
to gather the symbol statistics, and the actual encoding is perform in the
second pass), and may achieve better compression if the text characteristic
varies over time. One-pass codes are especially welcome in real-time trans-
missions (it is thus convenient to call the coder's side the sender, and the
decoder's side the receiver). In [BFNP04] two dynamic word-based algo-
rithms have been proposed. One is 256-ary version of the well-known FGK
algorithm [Knu85], which is in turn a variant of the dynamic Hu�man cod-
ing [Gal78]. The other algorithm is a dynamic version of ETDC. It is much
simpler and also somewhat faster than dynamic word-based Hu�man. An in-
teresting modi�cation, still from the same team, was published in [BFNP05].
This time they made the dynamic ETDC slightly slower in compression and
slightly worse in the compression ratio but at the same time achieved about
2.5-fold speedup in the decompression. Such asymmetry of the algorithm,
dubbed dynamic lightweight end-tagged dense code (DLETDC), is unique
among adaptive algorithms. The asymmetry is possible since the decoder

4.2. SEARCH-SUPPORTING CODES FOR LARGE ALPHABETS 141

has less work to do, it does not update the frequency list of words, like
the coder does, but is simply explicitly informed by the coder when some
codeword changes are necessary. Indeed, it does not a�ect the compression
ratio if updates (symbol exchanges) in the vocabulary are performed only
when they force a symbol get a shorter codeword than it has so far. For
example, if a word W had so far 20 occurrences and its current codeword
has two bytes, the 21st occurrence of W should not change its codeword if
W still belongs to the words that should be encoded on two bytes (although,
naturally, the increased frequency of W is likely to move it higher on the
sorted frequency list). It appears that the extra information passed to the
receiver is little enough to deteriorate the compression ratio by about 0.1%
only.

Recently, Fredriksson and Nikitin [FN07] proposed a code which can be
used in the word model, but can also work on characters (although this op-
tion seems somewhat less practical). Their code provides constant-time ran-
dom access to any symbol of the original text T , and allows e�cient (average
case optimal) search over it. The algorithm produces two bit streams. One
stream is a concatenation of codewords from the �densest possible� code: the
most frequent symbol s0 gets codeword 0, the second most frequent symbol
s1 gets 1, then symbols s2 . . . s5 get codewords 00, 01, 10, 11, respectively,
and so on. Of course, such a stream of data is non-decodable, therefore an
accompanying stream must hold the information about the boundaries. In
the basic variant, the codeword lengths are kept in the accompanying stream
in unary (k − 1 zeros followed by a single bit one, to represent the length
k), which is extremely simple to implement but the overall size of encoded
T is (pessimistically) bounded by |T ′| = 2n(H0(T) + 1) bits, where H0(T)
is the zeroth-order empirical entropy of T (de�nition of the empirical en-
tropy is given in Sect. 5.4.1). Constant-time random access to an arbitrary
ith symbol of T is achieved thanks to the select structure [Mun96], which
returns the position of ith set bit in a binary sequence, and is known to be
sublinear in the length of the sequence it works for, i.e., the length of T ′ in
our case. This basic scheme is enhanced in a couple of ways, for example, a
generalization is given which can lead to a code similar to ETDC, as if its
tag bits were order-0 entropy-compressed, still with constant-time access.
A drawback of this scheme is that appending a piece of text at the end,
even without caring for the change in symbol statistics, requires modifying
several streams (most costly of which is updating the select structure).

142 CHAPTER 4. SEARCHING IN COMPRESSED DOMAIN

4.3 q-gram based full-text coding
with e�cient search capabilities

In the previous sections we outlined the main algorithmic approaches to
combine compression with search. The overall conclusion is that most of the
known schemes either assume a text formed into words, or provide mediocre
compression (BPE variants), or, �nally, are complex and rather theoretical.
We also pointed out that there exist important applications for compression
algorithms that allow searching directly in the compressed stream, with-
out assuming that the input text is segmented into words. The algorithm
[FG06d] we present in this section belongs to this category.

Albeit devised for non-structured texts, the algorithm takes some in-
spiration from word based solutions. We show that combining ETDC or
(s, c)-DC with q-gram based dictionary gives a simple compression algo-
rithm that does not assume that the text is formed of words and separators.
The compression rate is only moderate on word based texts, but much more
competitive on e.g. DNA and protein data. We developed novel algorithms
that perform e�cient pattern matching in the compressed q-gram stream.
The performance is comparable to that of direct searching on uncompressed
texts (not counting the decompression times).

Note that there is no clean way to use the word based methods for arbi-
trary data. There seems to be at least three (problematic) ways to do this:
(1) simply de�ne some arbitrary text characters as �separators� (but it is not
clear which characters should be chosen, and the optimal choice depends on
the data); (2) use every qth character as a separator (this e�ectively leads
to our approach); (3) assume that the text consists of an extremely long
single word, which means that the compressor degenerates into the algo-
rithm used to compress the vocabulary, e.g. Lempel�Ziv compression (but
this means that the search algorithms do not work anymore, or at least the
search degenerates into searching in LZ compressed text).

The search problem variants that the word and q-gram based compres-
sion naturally support are di�erent. The word based approach allows �exible
searching of phrases, consisting of words, while searching e.g. partial words
requires resorting to multiple matching [MNZBY00]. Our search algorithms
solve the classical string matching problem, more suitable to data that are
not natural language.

Our proposal is based on q-grams and its immediate consequence is that
the scheme works straightforwardly with patterns not shorter than 2q − 1
characters. Nevertheless, we present also an algorithm for handling shorter
patterns. Both cases will be discussed in the two successive subsections.

4.3. Q-GRAM BASED FULL-TEXT COD. WITH EFF. SEARCH CAPAB. 143

Albeit the algorithm supports full-text searching, it is based on tools
devised for the word model. We could use, e.g., tagged Hu�man but we
experiment with more e�cient techniques, ETDC and (s, c)-DC. The dic-
tionary of symbols in those schemes contains all the space-delimited words
in the given text T = t0t1 . . . tn−1. In our case, T is a sequence of n/q
non-overlapping q-grams (w.l.o.g. we can assume q divides n). The ith q-
gram corresponds to T [(i− 1)q . . . iq− 1]. All the unique q-grams in T must
be represented in a dictionary Dict , hence it is crucial to �nd a balance be-
tween the more e�cient compression of the sole text T and a rapidly growing
dictionary Dict with increasing q. For natural texts, q should be 4 or 5.

4.3.1 Searching for long patterns
At the start we assume that P = p0p1 . . . pm−1 has at least 2q − 1 char-
acters. Searching P in the encoded T consists of two stages. In the �rst
stage, we generate q possible alignments of P . This means that, e.g., the
last, mth, character of P may be either the 1st symbol, or the 2nd, etc., or
the qth symbol of some q-gram. Ignoring at least one of those alignments
could result in missed matches. Each of those alignments corresponds to
(at most) one encoded byte sequence, e.g., according to the (s, c)-DC al-
gorithm and its codebook for text T . Note that at most q − 1 characters
at both P 's beginning and its ending may be truncated. For example, if
q = 4 and m = 10, one of the alignment variants, which could be denoted as
3+4+3, covers only a single q-gram. It is important to note also that some
alignments may contain one or more q-grams that do not appear anywhere
in T (at least, according to its partition into non-overlapping q-grams) and
hence cannot have a valid representation in the codebook. This is a fortu-
nate phenomenon, since we immediately discard such a pattern alignment
from further search, as this cannot be matched to. Alg. 29 shows the pseu-
docode.

The second stage performs multiple matching of the valid pattern align-
ments in their compressed form over the compressed T . We can use virtu-
ally any �o�-the-shelf� algorithm devised for multiple searching, e.g., Wu�
Manber [WM94] or Aho�Corasick [AC75]; more references can be found in
[NR02]. Certain algorithms from this category, e.g., Wu�Manber, make use
of Boyer�Moore skips, which are desirable also in our case, thanks to the
properties of the ETDC and (s, c)-DC codes. Matching pattern variants has
to be veri�ed by comparing their discarded characters (at the beginning or
the end of P) against the respective neighborhood of the compressed T .

We used BNDM algorithm [NR98, NR02], which is of O(n logσ m/m)

144 CHAPTER 4. SEARCHING IN COMPRESSED DOMAIN

Alg. 29 DCPreProcLong(P, q,Dict).
Input: pattern P , q, dictionary Dict
Output: Set of patterns P ′, number of patterns r, their minimum length minl
1 r ← 0; minl ←∞
2 for i ← 0 to q − 1 do
3 l ← 0; k ← NIL; j ← i
4 while j < m− q + 1
5 k ← argk{Dict[k] = P [j . . . j + q − 1]}
6 if k = NIL then break
7 Q ← codeword(Dict[k])
8 for h ← 0 to |Q| − 1
9 P ′[r][l + h] ← Q[h]
10 l ← l + |Q|; j ← j + q
11 if k 6= NIL then
12 r ← r + 1
13 if l < minl then minl = l
14 return P ′, r,minl

average time complexity, where n and m are in our case the compressed
text and pattern lengths, and σ is the alphabet size. This algorithm can
easily be adapted to multi-pattern �ltering by using the well-known pattern
superimposition technique and classes of characters [BYN97]. This works
very well in our scheme, since the number of patterns is small (at most
q), and the size of the alphabet relatively large (256), that is, the e�ective
alphabet size is 256/q, reasonable in practice. As the algorithm is bit-
parallel, the maximum pattern length (in compressed form) is limited by the
number of bits in a computer word. The case of longer patterns may be
handled by using several computer words.

Finally, we would like to illustrate the algorithm with an example. Let
the pattern be nasty_bananas, q = 3 and ETDC chosen for encoding the q-
grams. First we split the pattern into 3-grams considering three alignments:

nas ty_ ban ana
ast y_b ana nas
sty _ba nan

(Note that we have removed up to q−1 characters at each pattern boundary.)
Now, we encode the 3-grams, so the pattern alignments may turn into

something like:
(110)(92)(193) (184) (24)(202) (103)(220),
(45)(236) (84)(155) (103)(220) (110)(92)(193),
(81)(211) (23)(140) (36)(17)(199),

where parentheses and spaces are added only for clarity. The shortest of
those encodings has 7 bytes (the third one), therefore we truncate the other

4.3. Q-GRAM BASED FULL-TEXT COD. WITH EFF. SEARCH CAPAB. 145

two sequences to 7 bytes. Finally, all the 7-byte sequences are input for the
BNDM algorithm adapted for multiple matching. Obviously, this approach
requires veri�cation of potential matches.

4.3.2 Searching for short patterns
For patterns shorter than 2q − 1 characters the problem is that there are
pattern alignments that do not totally cover any q-gram in the text. Even
worse, the pattern can be shorter than q characters, and hence no whole
q-gram can occur in any pattern alignment.

There are several ways to overcome this problem. The simplest but the
most inelegant solution would be to decompress the text and then search. A
more sophisticated alternative resorts to bit-parallelism. We use the method
proposed in [Fre03] to build a Shift-Or automaton [BYG92, WM92b] to
process a whole q-gram in time O(d(m + q − 1)/we), where w is the number
of bits in computer word. This is O(1) in practice, given our limit for m, and
the practical values of q. The idea is to have an implicit decoding of the text,
encoded to the automaton, i.e. the automaton makes implicit transitions
using the original text symbols, while the input is the q-gram symbols of
the compressed text. The bene�ts of this solution are that it is extremely
simple to implement, does not need to generate di�erent alignments of the
pattern, and works in linear time w.r.t. the compressed text given our limit
(m ≤ 2q − 1) for the pattern length.

The standard Shift-Or automaton was presented in Sect. 1.3. Here we
remind that the method updates the bit-vector d with each character of the
text, and the table B (built in the preprocessing), having one bit-mask entry
per alphabet symbol, is involved in the updates.

To apply Shift-Or straightforwardly to the considered problem would
require that the text is decompressed to access the text symbols. However,
it is possible to preprocess the table B to process q characters simultaneously.
That is, the simulation step becomes d ← (d << q) | Bq[C], where C is the
codeword of a q-gram, and Bq[C] is the transition mask for the corresponding
(Cth) q-gram in the dictionary. The rationale behind this is that we have
precomputed the q shift and or operations for the q characters of the q-gram
Dict [C] and stored the result into Bq[C]:

Bq[C] ← ((B[Dict [C][0]] & msk) << (q − 1)) |
((B[Dict [C][1]] & msk) << (q − 2)) |
. . .

(B[Dict [C][q − 1]] & msk),

146 CHAPTER 4. SEARCHING IN COMPRESSED DOMAIN

Alg. 30 DCPreProcShort(P, q,Dict).
Input: pattern P , q, dictionary Dict
Output: match vectors Bq[]
1 for i ← 0 to σ − 1 do B ← ∼0 >> (w −m)
2 for i ← 0 to m− 1 do B[P [i]] ← B[P [i]] & ∼(1 << i)
3 for i ← 0 to |Dict | − 1 do
4 Bq[i] ← 0
5 for j ← 0 to q − 1 do Bq[i] ← (Bq[i] << 1) | B[Dict [i][j]]
6 return Bq

where msk has m lowest bits set and other bits zero. Bq[C] therefore pre-
shifts and bit-wise ors the state transition information for q consecutive
original symbols, and the state vector d is then updated with this precom-
putation. Alg. 30 shows a pseudocode for computing Bq.

The search algorithm is now simple. The compressed text is scanned byte
by byte, and each time we have parsed a whole codeword C, we execute the
simulation step. In consequence of processing q characters in a single step,
the implicit automaton has q accepting states, instead of only one. In other
words, after the simulation step any of the bits numbered m. . . m + q − 1
may be zero in d, each indicating an occurrence of the pattern. Alg. 31
shows the pseudocode.

The size of the table Bq is O(|Dict |) which is O(Σq) in the worst case,
but in practice much less (assuming the text is compressible). If this be-
comes an issue, we can preprocess Bq only for the f ¿ |Dict | most frequent
codewords, and fall back to standard Shift-Or for the |Dict | − f most rare

Alg. 31 DCSearchShort(T, P, q, Bq).
Input: Compressed text T , pattern P , q-gram match vectors Bq[]
Output: the number of occurrences
1 i ← 0; d ← 0; occ ← 0
2 qm ← ((1 << q)− 1) << (m− 1)
3 while i < n do
4 j ← i; C ← 0
5 while T [i] < c do
6 C ← C + T [i] ∗ ci−j

7 i ← i + 1
8 C ← C + (T [i]− c) ∗ ci−j

9 d ← (d << q) | Bq[C]
10 if (d & qm) 6= qm) then
11 occ ← occ + popcount[∼(d & qm) >> (m− 1)]
12 i ← i + 1
13 return occ

4.3. Q-GRAM BASED FULL-TEXT COD. WITH EFF. SEARCH CAPAB. 147

codewords. This requires that the text is locally decompressed for those
codewords.

Bit-parallelism induces a new limit for the pattern length, that is, the
algorithm works only for m ≤ w − q + 1, where w is the number of bits
in a computer word (typically 32 or 64). Combining this limit with the
requirement m ≥ 2q − 1, we have support for any pattern length assuming
q ≤ b(w + 2)/3c. This is a very reasonable limit, but if the text is very
redundant and hence we would like to use longer q-grams, we can turn the
Shift-Or method into �lter and search only pattern pre�xes of length w− q.
This would require veri�cation.

4.3.3 Experimental results
We have implemented the algorithms in C, and compiled with gcc 3.4.1.
The test machine was a 2GHz Pentium4 with 512MB RAM running GNU
Linux 2.4.20. For the experiments we used the following �les: Dickens (the
collected works of Charles Dickens, 10 192 446 bytes); XML (collection of
XML �les, 5 345 280 bytes); English, Spanish and Finnish versions of the
Bible (4 486 219, 4 276 390, and 4 376 781 bytes, respectively); DNA of E.coli
(4 638 690 bytes); proteins (5 050 292 bytes)1.

Table 4.1 shows the compression ratios of di�erent algorithms. We com-
pared our approach to gzip and word based (spaceless) models using the
same compressors as in the q-gram based algorithms. The pre�x �W� in
ETDC and (s, c)-DC means that word based model is used, while the pre�x
�q� indicates q-gram based model. The numbers include the sizes of the
compressed dictionaries of words or q-grams. Our approach is clearly worse
for natural languages, but the di�erence is smaller in the agglutinative lan-
guages, i.e., Spanish and Finnish. The number of di�erent words is much
larger than in English, and hence word based compression is less competi-
tive. For DNA and proteins our approach gives good compression ratios (the
results are very close to zero-order entropy of these texts). For the two pro-
posed schemes we also show the used values of q and s, the range of stoppers,
i.e., the byte values ending a codeword in (s, c)-DC. It is easy to notice that
the used (optimal) values of q force s as high as possible for DNA (alphabet
of 4 symbols) and proteins (alphabet of 23 symbols, including three special
ones).

We compressed the q-gram dictionaries with zlib library (a variant
of LZ77 compression)2. Table 4.2 shows the compressed dictionary sizes

1All test �les available at http://szgrabowski.kis.p.lodz.pl/research/data.zip
2www.zlib.org

148 CHAPTER 4. SEARCHING IN COMPRESSED DOMAIN

Table 4.1: Comparison of compression ratios

Dickens Bible Bible Bible XML Ecoli Protein
English Spanish Finnish

gzip �9 37.8% 29.5% 31.6% 32.9% 12.4% 28.0% 56.6%
W-ETDC 32.9% 34.4% 41.2% 41.5% 38.4% N/A N/A
W-(s, c)-DC 32.0% 32.6% 39.6% 40.5% 36.5% N/A N/A

s = 205 s = 226 s = 214 s = 202 s = 231

q-ETDC 47.3% 44.9% 46.9% 48.0% 32.9% 33.3% 64.0%
q = 5 q = 5 q = 5 q = 5 q = 10 q = 3 q = 3

q-(s, c)-DC 47.2% 44.8% 46.8% 47.9% 32.7% 25.0% 55.7%
q = 5 q = 5 q = 5 q = 5 q = 10 q = 4 q = 2

s = 145 s = 155 s = 150 s = 145 s = 165 s = 254 s = 254

Table 4.2: Dictionary sizes and the numbers of unique q-grams for various �les

Dickens Bible Bible Bible XML Ecoli Protein
English Spanish Finnish

Dict. size 390 672 202 114 217 345 228 618 255 462 353 538
q-grams 166 794 86 822 93 650 99 448 144 896 257 445

and the number of q-grams corresponding to Table 4.1 and the (s, c)-DC
method. Table 4.3 presents how varying the parameter q a�ects the com-
pression ratio on the example of Dickens �le and ETDC coding. As it
can be seen, q = 4 gives slightly worse results than q = 5. In prac-
tice we would like to use as small q as possible since it implies a smaller
dictionary, making this scheme reasonable also for moderately sized texts,
and triggers the faster of the two algorithms (Sect. 4.3.1) for shorter pat-
terns.

Table 4.4 shows the decompression times, excluding I/O time. For ETDC
and (s, c)-DC the parameters are as in Table 4.1. For natural languages the

Table 4.3: The e�ect of varying q on the dictionary size and the overall compression
(Dickens/ETDC)

q 2 3 4 5 6
q-grams 2 343 16 809 64 950 166 794 321 950
Dict. size 3 747 35 110 142 664 390 650 792 351

Compression 63.3% 55.9% 48.7% 47.3% 48.0%

4.3. Q-GRAM BASED FULL-TEXT COD. WITH EFF. SEARCH CAPAB. 149

Table 4.4: Comparison of decompression times

Dickens Bible Bible Bible XML Ecoli Proteins
English Spanish Finnish

gunzip 0.26 0.11 0.09 0.11 0.04 0.12 0.17
W-ETDC 0.30 0.12 0.15 0.16 0.16 N/A N/A
W-(s, c)-DC 0.30 0.13 0.14 0.15 0.16 N/A N/A
q-ETDC 0.33 0.13 0.12 0.13 0.09 0.08 0.09
q-(s, c)-DC 0.34 0.11 0.11 0.12 0.08 0.04 0.11

di�erent algorithms have similar performance. For XML gzip outperforms
the others, but clearly loses on DNA and proteins. Note that on the XML
�le, where the word based methods can be used, the q-gram based algo-
rithms are almost twice faster, partly because of the better compression
they provide for this case.

Table 4.5 shows search times in seconds for Dickens, DNA, and proteins.
Direct search means searching directly in the compressed text; Decompress
and search means �rst decompressing the text, and then searching with
the same algorithm used for the direct search; Search decompressed is the
running time of BNDM [NR98] algorithm applied to decompressed text (no
decompression time; used also for short patterns). The timings include all
the preprocessing for each algorithm, but not the I/O times. The patterns
were randomly picked from the texts.

For the long patterns we used minimum pattern lengths that produced
compressed pattern lengths of at least 2. For short patterns we used maxi-
mum pattern lengths not yet supported by the algorithm for the long pat-
terns. That means, for example, that for Dickens �le the short patterns
had 2q − 2 = 6 characters. The long patterns in this particular experi-
ment were those 7-character excerpts from the text which had passed the
�encoding test�. For example, the_cat would be rejected as according to
one of the alignments the encoding would be reduced to the encoding of
the 4-gram the_, whose length is one byte only. On the other hand, the
pattern trouble produces at least two-byte encoding for each alignment,
so is accepted as a �long� one. Deviating from these choices would make
our method faster in comparison. For the timings for Dickens we used
q = 4 and ETDC, as it gives much better performance than q = 5, while
the compression ratios are almost equal. For example, �Decompress and
search� is faster with q = 4 than plain decompression with q = 5. For
DNA and proteins we used (s, c)-DC with q = 4 and q = 2, correspond-
ingly.

150 CHAPTER 4. SEARCHING IN COMPRESSED DOMAIN

Table 4.5: Search times in seconds for short and long patterns

Direct Decompress Search
search and search decompressed

short long short long short long
Dickens 0.0481 0.0082 0.1852 0.164 0.0086 0.0115
E.coli 0.0043 0.0096 0.0631 0.062 0.0161 0.0135

Proteins 0.0195 0.0057 0.1362 0.127 0.0167 0.0113

4.4 A simple technique for denser encoding of static texts

In this section we present and experimentally verify a very simple idea in-
creasing the e�ectiveness of search-supporting byte codes, under the as-
sumption that the text we search in is static. This idea is applicable to
both word and q-gram model. In further considerations we assume that the
longest codewords have 3 bytes. This is a reasonable assumption for many
data types, including natural language texts. Also, to �x attention, we talk
about �words� as symbols of the text (albeit those could be q-grams instead).
Our proposal is based on a very simple observation: some pairs of 1-byte
encoded words, although globally frequent, may never go adjacently. For
example, in English it is unlikely to come across phrases like �a the�, �the a�,
�of of� or �from of�, although all the words in the listed phrases belong to the
most frequent ones. Consequently, the pairs of bytes representing those 2-
word phrases may never occur in the encoded text. If this is a case, the most
frequent words among those encoded on triples of bytes may obtain 2-byte
codewords instead, namely those corresponding to the non-occurring pairs
of most frequent words. Let us assume (s, c)-dense coding. There are s2

pairs of words encoded with one byte each. The text must be scanned and
the non-occurring pairs found (this can be implemented e�ciently with e.g.
a hash table). Note that, unfortunately, this idea requires the text to be
static, i.e., its application is somewhat limited. Obviously, when codewords
longer than 3 bytes occur, this idea remains applicable, but the amount of
potential optimizations grows; for example, non-occurring pairs of 1-byte
and 2-byte codewords may be used to shift some words encoded on 4 bytes
to the group of words encoded of 3 bytes. We have not considered how to
solve those issues optimally, however we believe those are mostly of theoret-
ical interest. The set of non-occurring word pairs must be stored with the
encoded text. As it is not very small typically, we found that using s2 bits
to indicate those pairs is more succinct than listing them directly on 2 bytes

4.4. A SIMPLE TECH. FOR DENSER ENCODING OF STATIC TEXTS 151

per pair. For example, with ETDC (s = 128) the resulting overhead is 2 KB.
Finally, we note that this idea makes the coding no longer pure order-0, and
as such resembles PETDC a bit [BFNP06]. As it will be seen in Sect. 4.4.1,
our idea gives much more humble improvements than PETDC, but is also
much easier in implementation and faster in coding and decoding.

4.4.1 Experimental results
We have implemented the described idea tested its e�ectiveness in the word
based and q-gram based models. For the word model we used the follow-
ing �les (also used in Sect. 4.3.3): Dickens (the collected works of Charles
Dickens, 10 192 446 bytes); XML (collection of XML �les, 5 345 280 bytes);
English and Spanish versions of the Bible (4 486 219 and 4 276 390 bytes,
respectively). In the XML �le, the end-of-line symbols were inconsistent,
so before further processing we converted 2-byte EOLs to #10. Addition-
ally, we took a couple of larger �les from the Pizza & Chili Corpus 3: those
are 50MB excerpts (pre�xes) of English texts, source codes, and XML, and
are referred to in tables as English50, Sources50 and XML50. For the sec-
ond experiment, with q-gram models, we additionally took 50 MB datasets
of MIDI pitch values and proteins from Pizza & Chili, which are denoted
here as Pitches50 and Proteins50. The compression results are presented
in Table 4.6 and Table 4.7, respectively. For compression on words, the
spaceless model was used. The vocabulary itself was zlib-compressed (with
the maximum setting, -9), following [FG06d]. Clearly, better dictionary en-
coding schemes are possible but this requires a separate study. The words,
given as input for zlib compression, were ordered according to their rank
and separated with #1 symbols, which did not occur in any of the given
�les. Identical vocabulary compression was used for q-grams but this time
the separators were not used for obvious reasons. The improvements on
words are rather disappointing, especially for ETDC. In one case (the En-
glish Bible) the modi�cation resulted even in a tiny loss (about 20 bytes).
This happened because the sub-vocabulary of 3-byte encoded words had
only around 2000 entries for this �le, and thus not the whole gained code
space could be utilized.

With (s, c)-DC, the gains are greater which is due to two reasons. One is
that the parameter s is greater than 128, so among the s2 word pairs there
are more such that never occur adjacently in the text. The second reason is
that with a greater s, there are more items in the group of 3-byte encoded

3 http://pizzachili.dcc.uchile.cl/

152 CHAPTER 4. SEARCHING IN COMPRESSED DOMAIN

Table 4.6: Denser encoding. Comparison of compression ratios in word based
schemes.

gzip bzip2 -9 W-ETDC denser W-(s, c)- denser W-
W-ETDC DC (s, c)-DC

Dickens 37.79% 27.47% 34.80% 34.65% 33.79% 33.24%
(s = 206) (s = 206)

Bible, English 29.54% 21.15% 32.43% 32.44% 31.12% 30.92%
(s = 219) (s = 219)

Bible, Spanish 31.59% 23.28% 39.43% 39.19% 38.33% 37.76%
(s = 205) (s = 205)

XML (5MB) 12.39% 8.25% 37.30% 37.11% 35.52% 35.03%
(s = 228) (s = 228)

English50 37.52% 28.40% 35.99% 35.74% 35.26% 34.53%
(s = 197) (s = 197)

Sources50 23.29% 19.78% 46.24% 45.78% 45.22% 44.05%
(s = 201) (s = 201)

XML50 17.23% 11.17% 35.66% 35.35% 35.19% 34.47%
(s = 202) (s = 202)

words, hence the most frequent of them have more occurrences than it used
to be with ETDC. The q value most often used in the experiment was 4. In
[FG06d] we found it the best compromise for natural language texts; q = 5
may provide still a bit better compression (in spite of the bloated dictionary),
but the minimum pattern length for which the faster of the two possible
algorithms is selected, is then greater. For some data types other values
of q are more suitable though. For very redundant XML data we present
results for q = 4 and q = 10. Proteins and MIDI pitches are much less
compressible, hence q = 3 was also tested for them. In both tables, gzip and
bzip2 compression ratios are also given, for a reference. The implementations
were written in Python and tested on an Athlon64 3000+ with 2GB of
main memory. In order to perform pattern search speed measurements,
needed for a full evaluation of the idea, the programming language of the
implementation must be switched to e.g. C++ in future works.

4.5 Conclusions and future work

We have presented a compression algorithm for arbitrary data which enables
pattern search with Boyer�Moore skips directly in the compressed represen-

4.5. CONCLUSIONS AND FUTURE WORK 153

Table 4.7: Denser encoding. Comparison of compression ratios in q-gram based
schemes.

gzip bzip2 -9 q-ETDC denser q-(s, c)- denser
q-ETDC DC q − (s, c)-DC

Dickens, q = 4 37.79% 27.47% 49.01% 47.90% 48.69% 47.08%
(s = 166) (s = 166)

Bible, English 29.54% 21.15% 47.03% 46.33% 46.47% 45.33%
q = 4 (s = 179) (s = 179)

Bible, Spanish 31.59% 23.28% 48.73% 47.91% 48.21% 46.88%
q = 4 (s = 177) (s = 177)

XML (5MB) 12.39% 8.25% 48.59% 47.81% 47.50% 45.83%
q = 4 (s = 199) (s = 199)

XML (5MB) 12.39% 8.25% 35.91% 35.27% 35.81% 34.90%
q = 10 (s = 166) (s = 166)

Proteins (5MB) 56.63% 53.27% 64.02% 64.06% 62.50% 62.61%
q = 3 (s = 221) (s = 221)

Proteins (5MB) 56.63% 53.27% 70.33% 65.62% 70.33% 65.43%
q = 4 (s = 131) (s = 131)

English50 37.52% 28.40% 49.54% 48.17% 49.25% 47.30%
q = 4 (s = 162) (s = 162)

Sources50 23.29% 19.78% 56.03% 54.03% 55.87% 53.21%
q = 4 (s = 154) (s = 154)

XML50 17.23% 11.17% 43.02% 41.92% 42.17% 40.28%
q = 4 (s = 182) (s = 182)

XML50 17.23% 11.17% 34.40% 34.01% 34.17% 33.50%
q = 10 (s = 180) (s = 180)

Pitches50 30.59% 36.12% 71.48% 69.06% 71.34% 68.28%
q = 3 (s = 147) (s = 147)

Pitches50 30.59% 36.12% 71.92% 70.11% 71.89% 69.77%
q = 4 (s = 140) (s = 140)

Proteins50 47.39% 45.56% 63.99% 64.00% 62.73% 62.69%
q = 3 (s = 217) (s = 217)

Proteins50 47.39% 45.56% 65.40% 61.02% 65.39% 60.72%
q = 4 (s = 133) (s = 133)

154 CHAPTER 4. SEARCHING IN COMPRESSED DOMAIN

tation. The algorithm is simple and the experiments validate the claim for
its practicality. For natural texts this scheme, however, cannot match, e.g.,
the original (s, c)-dense code in compression ratio, but this is the price we
pay for removing the limitation to word based textual data.

Several issues require further investigation. Experiments with succinct
dictionary representation are de�nitely needed, as the number of entries in
the dictionary grows exponentially with increasing q (at least as long as the
typical condition q ¿ n is satis�ed). Of some importance is devising a quick
entropy estimation method across many tested values of q, as this speeds
up preparing the compressed �les. Currently we calculate the entropy for
each q separately. Higher compression could also be reached if, aside from
q-grams, we allow text tokens shorter than q characters. Together with
some parsing rule(s), such a relaxed variant should allow to extract more
occurrences of popular short sequences of characters. Another bene�t of
more �exible parsing should be the possibility for fast and simple updates
to T (insertions or deletions in text). Finally, the presented technique seems
to have potential for approximate pattern matching, e.g., in combination
with the technique from [FN04], which may su�er from preprocessing costs
in non-compressed version.

Additionally, we introduced a simple idea for improving the e�ectiveness
of byte codes, if the text is static. Experiments showed that this concept is
more bene�cial in case of q-gram based rather than word based compression.
In no case the gains are spectacular, but the idea can be defended as be-
ing very simple both conceptually and programmatically, and not a�ecting
search or decompression speed.

Chapter 5

Compressed full-text indexes

Online searching for a pattern of length m in a text of length n, both over
an integer alphabet Σ of size σ, requires accessing at least n/m characters
of the text. Compressing the text may reduce (on average) the number of
character comparisons by a factor, but does not change the overall picture.
Much more drastic improvements are possible only if extra information for
a given text is built in the preprocessing.

This extra information, called an index, is a subject of scienti�c inves-
tigations since the 1970s, but only in the last decade the research has been
greatly boosted, with the advent of so-called compressed indexes, which
often replace the text with its compressed representation adding search ca-
pabilities, and still handle simple queries very e�ectively.

Our contributions in this area include a proposal of a very simple FM-
index variant, called FM-Hu�man [GMN04b] and its more e�cient varia-
tions o�ering various tradeo�s [GMNS05, PGNS06, GNP+06]. As a byprod-
uct, we present a simple constant-time implementation of the selectNext
query (useful in our index) [GMN04a] and also a simple succinct constant-
time select implementation (unpublished). We have also participated in de-
signing practical implementations of rank and select structures [GGMN05].

5.1 Motivation and problem aspects

Compressing the text for online searching, discussed in the previous chapter,
may speed up the search process in practice, and is especially recommended
when the text is large enough to be stored on disk rather in the main mem-
ory, since in such a case compression signi�cantly reduces the number of
I/O operations, but in theory the number of character comparisons is not

155

156 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

reduced, or reduced only a little. This implies from the fact that the ratio
n′/m′, where n′, m′ are the lengths of the compressed text and the com-
pressed pattern, respectively, is approximately equal to the �original� ratio
n/m, at least on average. We can also say that online pattern search (no
matter if the text is compressed or not) is linear, in the sense that doubling
the text (approximately) doubles the pattern search time.

Obviously, there are important scenarios in which the text does not
change over time, or requires updates only infrequently, but searching oper-
ations are performed often. The need for fast search is especially burning in
multi-user environment, e.g. through the Web. It is conceivable that some-
times several queries are sent to the server in a second, and then referring
to linear scan over the text would simply be much too slow, especially if the
text collection is on the order of hundreds of megabytes, or gigabytes.

To speed up search operations signi�cantly, one has to build an index
over the given text. The index is carefully extracted additional information
which helps to answer quickly some or all of the following questions:

• does a given pattern P occur in text T (at least once)?
• how many times does P occur in T?
• in what locations of T does P occur?
• what are the text snippets around each occurrence of P in T?
The �rst of the listed questions is called an existential query and is least

informative. We will not care for this kind of query in the following consider-
ations. The second one, a counting query is more useful. Trivially, knowing
how many times P occurs in T answers also the existential query. The third
question is known as a reporting or locating query. As we are going to see,
with some indexes knowing the pattern count in the text implies that we
can straightforwardly report the locations, but with other indexes the locate
operation is harder. The last requirement in the list above is called a display
query. Note that if we can tell the locations of the pattern, and we have free
access to the original text (that is, we can access T [j] for any j in constant
time), then handling display queries poses no extra di�culty than handling
locating queries.

Apart from those basic features, there can be other functionalities sup-
ported with text indexes. For the �rst thing, note that the assumption
of static text is rarely ful�lled in practice (especially for huge collections,
and those need indexing most!). For example, a newspaper database grows
with each new issue, an online book library grows with every newly added
book, and badly scanned and OCR'ed books are replaced with more correct
versions (this is an example of both insertions and deletions in the text col-
lection), a medicine database tends to grow quickly, but also some medicines

5.1. MOTIVATION AND PROBLEM ASPECTS 157

are removed from market (as e.g. potentially harmful) and their descriptions
should also be removed from the database, and so on. Of course, some of
the mentioned applications could be better addressed using structured text
(e.g., hierarchical, in XML format) but this goes out of the scope of our the-
sis. In the following we assume unstructured, ��at� text only. Fortunately,
as we will see later, some of the techniques developed for indexing �at text
can also be adapted to indexing tree structures (e.g., XML).

An index is called dynamic if it can handle updates (insertions and dele-
tions) to the text easily. Some indexes have only partial dynamic capabilities
(e.g., appending text at its end, but not in arbitrary locations), but for many
data structures all that we can do if the text changes is to build the index
again from scratch. Consequently, the server storing the text and its index
must be temporarily unavailable, or, at best, part of its computing power
and other resources are very often used for rebuilding the index.

Another precious feature of an index is approximate matching support
[MN05a]. Unfortunately, this is a very hard problem, and existing solu-
tions are still immature and often heuristic [CGL04, NST05, MN05b, NC06,
CO06]. We do not discuss indexed approximate matching in this chapter.

Most classic text indexes are several times larger than the text itself,
which is a severe problem if the text is very large. To address this issue,
many compact indexing data structures have been proposed in the last few
years (most of this chapter is dedicated to those structures). Still, for huge
enough texts, even the most succinct indexes, based on compression tech-
niques, cannot make it possible to keep everything in the main memory.
Therefore an important question appears, how to limit the number of I/O
operations during the search. The indexes that solve this problem better
than in a naïve way, are called external indexes. A prominent application
where text sequences are often huge is bioinformatics. For example, the hu-
man genome takes nearly 3GB of space, assuming each base pair occupies
one byte [SS01].

In this chapter we consider full-text indexes, that is, structures which
are able to �nd any subsequence of T . An alternative to full-text indexes
are word-based indexes, very useful in their domain, i.e., natural languages,
but not easy to be adapted to other kinds of text. Also, there are several
important human languages without a clear segmentation into words (e.g.,
Chinese, Korean, Japanese), and even with some European languages this
approach to indexing causes problems. These issues were discussed in more
detail in Chap. 4. A canonical example of word-based indexing is the concept
of the inverted index, also presented in Chap. 4.

We also note that the interest in succinct data structures is not limited

158 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

to texts, but also several results for e.g. unlabeled graphs [MR97], labeled
graphs [BAHM07], and trees [MR97, GRRR04] exist. However, presenting
those structures would go out of the scope of this work.

5.2 Classic indexing data structures

The �rst important text indexing structure was the su�x tree (ST) [Wei73].
The su�x tree is a trie (also known as a digital search tree) whose string
collection is the set of all the su�xes of a given text, with an additional
requirement that all non-branching paths of edges are converted into single
edges. Typically, each ST path is truncated as soon as it points to a unique
su�x. A leaf in the su�x tree holds a pointer to the text location where the
corresponding su�x starts. As there are n leaves, no non-branching nodes
and the edge labels represented with pointers to the text, the su�x tree
takes O(n) words of space, which is in turn O(n log n) bits. The structure
can be built in linear time, which was earlier achieved for constant alphabets
[Wei73, McC76] (even in an online manner [Ukk95]), and then also for integer
alphabets [Far97]. Moreover, the linear-time construction algorithms can be
fast not only in theory, but also in practice [Gri07]. Searching for all occ
pattern occurrences in the su�x tree may take only O(m + occ) time in the
worst case, no matter how large the alphabet is, if perfect hashing is used to
traverse over a node's children in O(1) time per each, but in a more practical
implementation the starting characters of the edges outgoing from a given
node are simply kept in an unsorted array. The worst-case time grows to
O(mσ + occ) but in practice the size of most nodes is quite small and linear
scan over them is fastest. Something between those extremes is to keep the
children of a node lexicographically sorted, and then a binary search in each
node leads to O(m log σ + occ) worst-case time.

The main problem with the su�x tree are its large space requirements,
even in the most economical version [KB00] reaching almost 9n bytes on
average (and 16n in the worst case), plus the text, for σ ≤ 256, and even
more for large alphabets. Most implementations need 20n or more space.

To address this important weakness of the otherwise powerful structure,
in the beginning of the 1990s Manber and Myers proposed a su�x array
(SA) [MM90, MM93], a structure independently discovered also by Gonnet
et al. [GBYS92], under the name of the PAT array. The su�x array is a
ordered collection of n pointers to text su�xes, where the order corresponds
to lexicographic ordering of the sequences (i.e., the su�xes) the pointers
store references to. In a typical, convenient implementation (4-byte point-

5.2. CLASSIC INDEXING DATA STRUCTURES 159

ers, 1-byte characters), a su�x array needs 5n bytes of space, including the
text. Searching in the su�x array consists in two binary searches: one is
to �nd the beginning of the interval of the su�xes starting with pattern P ,
and the other to �nd the end of this interval. The comparisons refer both
to the array of indexes and the underlying text As in each comparison up
to m su�x characters need to be accessed, the worst-case search time is
O(m log n) but it can be argued that the time is only O(m logσ n + log n)
on average. There are several possibilities to speed up the search in a su�x
array, either in theory or in practice. One is to keep an extra array of n val-
ues (of log n bits each, if we want this idea to work with an arbitrarily large
m) storing the lengths of the common pre�xes (LCP) between the current
su�x and the previous su�x on the search path (which is uniquely de�ned)
[MM93]. Thanks to the LCP table, the search time complexity goes down
to O(m + log n) but in practice this idea not always helps [FF07]. Even
without the LCP table, a similar technique can be used, namely monitoring
the number of matching characters between P and both ends of the su�x
interval we are currently in [MM93, FF07], to save on the pattern pre�x
comparisons, but in the worst case it does not help anything. To avoid
doubling the space when the LCP table is added, a compromise variant is
possible. The idea is to keep the LCP values only for n/ log2 n regularly
spaced su�xes [GS03], thus losing its support in the last log log n steps of
the binary search. In this way the space for the LCP table drops from
n log2 n bits to n bits (in practice, this is an improvement from 4n bytes
to n/8 bytes) and the time complexity changes to O(m log log n + log n).
Another idea is to start the search from a hopefully narrow enough inter-
val due to precomputed array of σk words [MM90, FF07]. In this way, the
binary search over the SA is restricted to searching for the pattern su�x
of m − k characters. In a similar spirit, Baeza-Yates et al. proposed an
external SA variant [BYBZ96], in which the su�x array is kept on disk,
but the �rst symbols of regularly sampled su�xes, in their sorted order,
are also cached in main memory, to save on the number of I/O opera-
tions.

From the theoretical point, an interesting question is whether some
search strategy in the pure SA (without the LCP table or other auxiliary
structures) can lead to better complexity than O(m log n) in the worst case.
The answer is positive [Hir78b], the worst-case complexity can be improved
if some asymmetric (instead of the standard halving) su�x selection in the
current search interval is chosen, and the optimal algorithm, with a pre-
cise (complex) worst-case formula, was found by Andersson et al. in 1994
[AHHP94, AHHP01].

160 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

Interestingly, it was recently shown that sorting an array of strings in
lexicographical order is not the optimal arrangement for searching an m-
character pattern [FG04]. A di�erent permutation, which can be e�ciently
obtained from the sorted set of strings, leads to the O(m+log n) worst-case
search. If applied for the set of all su�xes of a text, this matches the search
complexity of the su�x array with the LCP table, but without the extra
space needed for the LCP. It is hard to say how practical this surprising
discovery can be, since we are not aware of any experimental evaluation of
this idea yet.

Some extra tables were added to the SA in a proposal by Abouelhoda
et al. [AKO04], under the name of the extended su�x array (ESA). This
structure achieves O(mσ+occ) search time which is quite practical for DNA
or other cases when the alphabet is very small. Unfortunately, the ESA takes
13n bytes (including the text), which is not so competitive to the su�x tree.
It seems possible to decrease its search complexity to O(m log σ) but for the
price of using even more space.

In a recent thorough work on engineering the ST and ESA (and other in-
dexes) implementations [Gri07], Grimsmo observed that a ST variant based
on dynamic arrays rather than sibling linked lists is up to 20 times faster
in the construction and 10 times faster in search, but the price is that the
array-based structure needs about 20% more space. He also noticed that
if the number of pattern occurrences is large, then reporting them can be
many times faster with a su�x array than with a su�x tree, but the su�x
tree becomes the winner if the number of matches is small.

Building a su�x array is also an active research area. Standard sorting
algorithms (e.g., merge sort) are inappropriate in this setting as they don't
make use of the speci�c properties of text su�xes, and are thus practically
slow and with superquadratic worst-case behavior. Yet in the seminal work
by Manbers and Myers [MM93] an algorithm with O(n log n) worst-case
complexity was presented, which is optimal for general alphabets. This al-
gorithm is, however, slow in practice [Deo03, Sect. 4.3.1]. A much faster
algorithm with the same complexity was given in 1999 by Larsson and
Sadakane [LS99], a variant of which is currently one of the components
of the su�x sorting algorithm implemented in bzip2 [Sew06], a popular
compressor based on the BWT transform [BW94]. Interestingly, the fastest
algorithms for typical inputs [MF04, Deo03, MP08], beating the Larsson�
Sadakane algorithm about two or three times, are very slow in the worst
case (even superquadratic). Most of them, however, have some protection
against �popular� kinds of pathologies (e.g., long runs of the same symbols
which occur often e.g. in human-made graphics).

5.3. EARLY COMPACT TEXT INDEXES 161

The su�x array can be obtained easily from the su�x tree by writing
down its leaves in left-to-right order (assuming that the childen in ST nodes
are lexicographically ordered). Hence the ST over an integer alphabet can
be constructed in O(n) time, and the in-order traversal over the leaves is also
linear in time, the su�x array construction can also be O(n) in the worst
case, a fact that was realized since the origin of the SA structure. Still,
such a construction algorithm is not only very space consuming, but also
slow. It was long an open question, whether a SA can be built directly in
linear time. The positive answer was given in 2003, when as many as three
di�erent O(n)-time algorithms were presented [KS03, KSPP03, KA03]. All
those algorithms have two drawbacks: they are relatively slow in practice
and need an extra set of n pointers (some of them even more) to operate
(i.e., they use 9n or more bytes in a real implementation, as opposed to 5n
bytes used by many other algorithms). Hence a question whether a practical
linear-time su�x sorting algorithm exists, remains open.

5.3 Early compact text indexes

All the indexes presented in the previous section need O(n log n) bits of
space, with the constant at least 1, plus n log σ bits for the text itself. In a
typical setting this translated to 5n bytes (achieved by the plain su�x array,
the most economical from the presented indexes), which can be unacceptable
for very large texts.

One of the early proposals for decreasing the storage occupied by the suf-
�x tree was given in 1996 by Kärkkäinen and Ukkonen [KU96b]. Their idea
was to sample only n/k su�xes of the text, in regular intervals, and build
the ST over those su�xes only. The parameter k may be 4, for example. In
this way, the space occupancy is signi�cantly reduced, but the search gets
slower. This is because one has to test for the occurrence of P [0 . . . m− 1],
and P [1 . . . m− 1], etc., and P [k− 1 . . . m− 1] in the set of indexed su�xes,
and for k− 1 out of the k cases the found matches must be veri�ed with the
truncated pre�x of P . In this way, the search gets at least k times slower,
and the worst case behavior is disastrous. Also, it is required that m ≥ k.

An akin idea is to sample the text su�xes on word boundaries, again
used for the �rst time with the su�x tree [ALS96], and later also for DAWGs,
compact DAWGs, and su�x arrays. Since those structures are not devised
for full-text searching, we omit details, but a curious reader can be directed
to [FF07], and the references therein. We only note that sparse indexes on
words are easier to be built in both linear time (in n) and only O(nw) working

162 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

space, where nw is the number of words, than corresponding indexes with
an arbitrary (or even regular) sampled set, for whose analogous solutions
are still unknown.

There are a number of other text indexes proposed in the 1990s, which
rival with the su�x tree in space occupancy, but are not competitive to the
su�x array in this aspect. Most of them are brie�y reviewed e.g. in [GKS03].

The beginning of the new era in compact indexes can be attributed to
the work of Kärkkäinen and Ukkonen [KU96a], who proposed in 1996 an
index based on the Lempel�Ziv compression, with O(n log σ) bits of space
in the worst case, and sublinear search time. What is most interesting, the
size of that index was proportional to the kth-order entropy of the text, as
it was linear in the number of blocks in the Lempel�Ziv parsing [LZ76] of
the text. It means that not only the index size was dependent on the text
it was built for, but also that the relation could be clearly expressed in well
understood and widely used notions of the information theory. From these
reasons, the Kärkkäinen�Ukkonen index can be called a compressed index.
Still, the index couldn't get rid of the text itself.

A completely di�erent succinct structure was presented in 2000 by Mäki-
nen, under the name of the compact su�x array [Mäk00, Mäk03a]. The
author introduced the term of a self-repetition in a su�x array, which is
understood as an interval of indexes in the SA with values shifted by 1 com-
pared to another interval of indexes of the same size. The self-repetition can
thus be replaced by a link to the corresponding area. Interestingly, in the
original papers no entropy-related bound on the size of the index was given,
but in a later work [MN04a] Mäkinen and Navarro showed it is bound within
O(Hkn log n) bits, not counting the text which needs another n log σ bits.
Akin to this index is the much more recently developed locally compressed
su�x array (LCSA) [GN07b], which achieves O(Hk log(1/Hk)n log n + n)
bits, apart from the text itself, and handles counting queries in O(m log n)
time, and locate queries in O(occ + log n) time for occ occurrences of the
pattern.

In the same year 2000 another succinct index was proposed, dubbed
the compressed su�x array (CSA) [GV00]. The search mechanism in CSA
mimics the behavior of the classic SA, but instead of the array A of su�xes
another array is used, with values of the so-called function Ψ, which is also
a permutation of the numbers [0 . . . n− 1], but with an interesting property
of being compressible. The function Ψ maps su�x TA[i]...n to the next su�x
in the text, TA[i]+1...n, and is de�ned by the formula Ψ(i) = i′ such that
A[i′] = (A[i] + 1) mod n. Fig. 5.3 shows an example. The property of the
Ψ function that makes it compressible is that its successive values form (at

5.4. BASIC CONCEPTS OF THE FM-INDEX 163

most) σ increasing sequences. More speci�cally, the Ψ values are increasing
within each area of A which points to su�xes starting with the same symbol
from the alphabet. Instead of storing the raw values of Ψ, we can use a
well-known technique of di�erential coding (also known as delta coding or
gap encoding). Apart from e�cient encoding of the Ψ array, we also need
random access to the sequence. A standard solution could be to sample
every kth value from the list (for k = log n, for example), encode its absolute
value, and store it in an extra table, together with a pointer to its position
in the compressed sequence. Accessing an arbitrary value of Ψ would be
accomplished by �nding the nearest absolute value and decoding all the
successive values until the required one, which can be done in O(k) overall
time. In fact, better solutions are possible. Sadakane [Sad02] presented a
CSA variant using nH0 log log n + O(n log log σ) bits, plus n log σ bits for
the text being kept verbatim. Locating a pattern is clearly obtained in
O(log log n) time, and displaying the context of ` characters around a found
pattern needs only O(`) time, since the text is available in the explicit form.
More interestingly, yet in 2000 Sadakane [Sad00] presented another CSA
variant which did not require the text itself. The index space was essentially
expressed in terms of order-0 entropy, counting was performed in O(m log n)
time and locating a pattern needed O(logε n) time, where 0 < εn ≤ 1 was
a tradeo� between locate time and the actual index space. Later works by
Grossi, Gupta and Vitter [GGV03, GGV04] showed that the space within
the CSA framework may be decreased to optimal (apart perhaps lower order
terms), i.e., nHk bits, but the counting complexity has an additive factor
of at least log3 n. Detailed tradeo�s between various existing variants are
summarized in [NM07, Sect. 8.2].

5.4 Basic concepts of the FM-index

The compact su�x array of Mäkinen and the compressed su�x array of
Grossi and Vitter were very interesting and quite practical concepts but
the breakthrough was yet to come. The breakthrough was achieved yet in
the year 2000, and it was the paper by Ferragina and Manzini, where they
presented the �rst self-index (a few months ahead of Sadakane's work on
CSA), that is a compressed index allowing to access an arbitrary subsequence
of text T without storing (explicitly) T itself! Arguably, this was one of
the greatest discoveries in algorithmics in the recent years. The Ferragina�
Manzini index is based on the Burrows�Wheeler transform (BWT) [BW94],
used earlier for compression, and was dubbed the FM-index (according to

164 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

i A[i] Ψ su�x TA[i]...n

1 12 12 $
2 5 4 -a-tete$
3 7 11 -tete$
4 6 3 a-tete$
5 11 1 e$
6 4 2 e-a-tete$
7 9 9 ete$
8 2 10 ete-a-tete$
9 10 5 te$
10 3 6 te-a-tete$
11 8 7 tete$
12 1 8 tete-a-tete$

Figure 5.1: CSA example. T = tete-a-tete$

the authors, we should believe that the letters in the name stand for �fast�
and �minute�). To understand how FM-index works, it is necessary to know
the mechanism of the BWT. It is explained in the following subsection. An
excellent survey of BWT-based and other full-text compressed indexes was
written by Navarro and Mäkinen [NM07].

5.4.1 Burrows�Wheeler transform
As usual, we assume that to text T a unique symbol $ will be appended, and
that $ is lexicographically smaller than all the other symbols in the alphabet.
The Burrows�Wheeler transform [BW94] considers all cyclic shifts of the
string T$ and sorts them lexicographically. Because of the extra symbol $
in all the cyclic shifts, the resulting order of sequences is equivalent to the
output of any su�x sorting algorithm. The sorted sequences are placed in
a conceptual matrix M of (n + 1) × (n + 1) size. The �rst column of this
conceptual matrix will be called column F , while the last column of the
matrix will be called column L. Fig. 5.4.1 illustrates.

The BWT output is only those two columns, plus one extra integer from 0
to n. As the cyclic shifts of the text are sorted, the column F must be formed
of σ + 1 runs (the alphabet has been augmented with the $ symbol, hence
its size is now σ + 1) of identical characters, and can be straightforwardly
represented in O(σ log n) bits (which is on the order of 1KB in practice).
Interestingly, the column L, which in fact is a permutation of the text, is

5.4. BASIC CONCEPTS OF THE FM-INDEX 165

F L

BABOON$
ABOON$B
BOON$BA
OON$BAB
ON$BABO
N$BABOO
$BABOON

F L

$BABOON
ABOON$B
BABOON$
BOON$BA
N$BABOO
ON$BABO
OON$BAB

_

before BWT after BWT
Figure 5.2: BWT example. T = BABOON$

also typically compressible (although, of course, not as well as the column
F). The column F tends to have runs of same characters, and also often
only a few characters � recurring again and again � in local areas, and
those features are the premise of all BWT-based compression algorithms
[BW94, Fen96, BK00, Deo02, Deo05, FGM06, Abe07].

The column F is also called the BWT sequence of text T , or in short
BWT(T).

The beauty of the transform lies in its reversibility. Having got the
columns F , L, and one additional integer, it is possible to recover T in
linear time. The additional number is the position of the text terminator
$ in column L. The corresponding symbol in column F (the �rst B in
Fig. 5.4.1 on the right) is the starting character of T .

Since the seminal work of Burrows and Wheeler [BW94], BWT has been
used as a working horse for compression. The fact that the BWT sequence
tends to contain long runs of identical characters can be explained by little
diversity within a single context. From earlier compression research, espe-
cially on prediction by partial matching (PPM) coders [CW84, CT97], it was
known that not only that longer contexts contain fewer distinct symbols than
shorter contexts, but also that the �diversity� of symbol occurrence within
individual contexts diminishes if the context length increases. The vague
notion of diversity can be precisely de�ned as the 0th-order entropy, or,
to avoid some technical problems, the 0th-order modi�ed empirical entropy
introduced by Manzini in [Man01]:

Hk(T) =
{

(1/n)
∑

i ni log(|T |/ni), k = 0,
(1/n)

∑
|w|=k H0(ws)|ws|, k ≥ 1.

(5.1)

Sorting the cyclic shifts of the text results in grouping similar contexts:

166 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

the longer the pre�x that two shifts of T have in common, the closer they
are in the conceptual matrix, and hence the closer their preceding characters
are in column L. Note that, opposed to most PPM compression schemes,
in BWT there is no limitation of the context length, which is especially
helpful for compressing very redundant data. The lack of constraint on the
maximum context length make BWT-based compressors similar to PPM*
[CT97], a compressor from the PPM family with arbitrarily long contexts.
However, PPM* struggles with large memory consumption and is slow, while
most BWT-based compressors are relatively fast, especially in decompres-
sion. The bene�ts of the BWT approach come at a cost though: the actual
character contexts are unknown (they cannot explicitly be taken into ac-
count during the coding, since the decoder would be unable to work), apart
from order-1 contexts which can be obtained from F column. Recently it was
discovered that some rudimentary knowledge about the contexts in BWT
can be extracted [Deo05, Man04], but the loss in speed in both compression
and decompression seems to be impractical for the mediocre improvement
in compression ratio.

In most schemes, the post-BWT modeling and coding is simpler. For
example, in the popular compressor bzip2 [Sew06], the BWT output is se-
quentially transformed by a second-stage transform, namely the move-to-
front (MTF) algorithm [Rya80, BSTW86], which maintains a queue of σ
alphabet symbols in order of their last occurrence in the processed so far
part of the BWT sequence. The MTF �attens the symbol code distribution,
resulting in for example about n/2 zeros for a typical English text, and dom-
inance of other low values in the rest of the encoded sequence. The MTF
output in bzip2 is then run-length compacted, and �nally compressed with
Hu�man coding.

Other ideas attempting to improve the bzip2 performance are, among
others:

• replacing MTF with another second-stage transform [BKS99, Bin00,
Deo02, Abe07],

• using sophisticated modeling and/or coding of the output of the second
stage transform [BK00, Deo02],

• applying data-speci�c preprocessing of the input, e.g., oriented for
natural language texts [Gra99, AT05, SGD05],

• partitioning heterogeneous input data before further BWT and the
following stages [Gre04], which makes sense e.g. for binary data or
TAR'red non-uniform �le collections.

Also, the compression ratio of bzip2 is seriously hampered on large �les,
since the maximum block size for BWT is there limited to 900KB.

5.4. BASIC CONCEPTS OF THE FM-INDEX 167

Most interest in BWT-based compression has been practice-oriented,
where the proposed techniques are of heuristic nature and their perfor-
mance is benchmarked over several popular corpora (e.g., Calgary corpus1),
but recently we can observe more active research on the theoretical front.
The �rst non-trivial upper bounds on the output size of any BWT-based
compression algorithm were obtained by Manzini [Man01] in 1999, who
proved that, roughly speaking, the compressed text size T is bounded by
5|T |Hk

∗(T)+Θ(1) for the BWT+MTF+RLE0 scheme, where RLE0 is run-
length encoding of runs of zeros only. A similar bound derived in Manzini's
work pertained the case of the compression scheme without the RLE step,
but the constant 5 grew to 8.

Currently, the best upper bound [GM07] on the BWT-based compression
ratio is approximately 2.7 times the kth-order modi�ed empirical entropy of
the text, where k is arbitrary. This result was achieved with a variation of
the distance coding post-BWT transform [Bin00], and has no dependency
on the original text size, i.e., can reasonably bound even very low entropy
texts. If, however, the entropy of a given text is not so very low, then the
known upper bound is tighter [KLV06].

5.4.2 Search mechanism (LF-mapping)
Searching in the sequence T bwt resembles the inverse BWT transform. First,
the interval of rows of M containing the occurrences of P [m] is found, the
next found interval corresponds to pattern su�xes P [m−1 . . . m], and so on.
The function Occ(S, c, i) is needed, which returns the number of occurrences
of symbol c in sequence S[1 . . . i]. (Sometimes we may omit the sequence
parameter for Occ, to simplify notation.)

Alg. 32 presents the search algorithm [FM00]. It �nds the interval of
A containing the occurrences of the pattern P . In addition to function
Occ(S, c, i), the array C[1 . . . σ] is needed, which stores in C[c] the number of
occurrences of characters {$, 1, . . . , c−1} in the text T . With this de�nition,
C[c] + 1 is the position of the �rst occurrence of c in F (if any).

An e�cient implementation of the Occ function, both in time and space,
is the key to the success of FM-indexes. The problem of fast Occ queries
over a text sequence was posed long before compressed text indexes started
to appear (in order to simulate tree navigation in little space [Jac89]), but
originally was considered only for a binary alphabet. Traditionally, telling
the number of occurrences of 1s in a given bit sequence, up to a given

1http://corpus.canterbury.ac.nz/descriptions#calgary

168 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

Alg. 32 Count-Occs(T bwt, n, P, m).
1 i ← m
2 sp ← 1; ep ← n
3 while ((sp ≤ ep) and (i ≥ 1) do
4 c ← P [i− 1]

5 sp ← C[c] + Occ(T bwt, c, sp − 1) + 1

6 ep ← C[c] + Occ(T bwt, c, ep)
7 i ← i− 1
8 if (ep < sp) then return �not found� else return �found (ep − sp + 1) occs�

position, is called the rank operation, and the inverse question, about the
position of ith bit 1 in a given bit sequence, is called the select operation
[Jac89]. Both operations are vital components of FM-indexes. In particular,
the generic function Occ is typically translated into the rank problem.

More formally, let us de�ne:

Def. 5.4.1. Let B[1 . . . n] be a binary sequence. Then, rank(B, 1, i) = |{1 ≤
j ≤ i : B[j] = 1}|, where i ∈ [1 . . . n]. Analogously, rank(B, 0, i) = |{1 ≤
j ≤ i : B[j] = 0}|, where i ∈ [1 . . . n]. Now, select(B, 1, i) = j, such that
rank(B, 1, j) = i, and, if j > 1, rank(B, 1, j− 1) = i− 1, where i ∈ [1 . . . n].
Analogously, select(B, 0, i) = j, such that rank(B, 0, j) = i, and, if j > 1,
rank(B, 0, j − 1) = i− 1, where i ∈ [1 . . . n].

Note that rank functions for symbol 0 and 1 are complementary, that is,
rank(B, 0, i) = i− rank(B, 1, i) and vice versa, but this does not hold in the
case of select . Where it does not lead to confusion, we are going to use a
shorter notation, rank(B, i) and select(B, i), to denote the number of 1s in
the considered sequence. Generalization of the above de�nition to alphabets
larger than binary is straightforward. In some FM-index variants, the select
query is not used.

Apart from the old question how to make those operations both fast and
using little space, in compressed indexes we are faced with a newer problem:
how to deal with alphabets larger than binary. We address those issues later.
So far we only state that both rank and select can be handled in O(1) time
for binary sequences, using o(n) bits apart from the sequence B itself.

5.4.3 Locating occurrences and displaying the text
In many practical scenarios one would like to know the positions of found
pattern occurrences in the text, and often also its context, i.e., several char-

5.4. BASIC CONCEPTS OF THE FM-INDEX 169

acters in front and just after each found match. Those particular queries
are called locate (or report) and display.

Now we present the locate technique developed by Ferragina and Manzini
[FM00]. In terms of the FM-index, the problem boils down to telling the
position pos(P) in T of each su�x which is pre�xed with P in the matrix
M. This technique can easily be adapted to other indexes from the FM
family (e.g., FM-Hu�man, described later).

To this end, we sample T at regular intervals of size `. The sampling
parameter ` controls the sampling density and poses a natural space/time
tradeo�. The sampled su�xes will be logically marked. A simple solution
could be to assign a single bit to each su�x of T , and use 1s to denote
the sampled bits, but this needs (at least) n bits overhead which might
be a dominating term in the Ferragina�Manzini algorithm. To overcome
this problem, they use a 2-level scheme (a careful reader will easily notice
a similarity to the classic rank solution presented later in this chapter),
partitioning the rows of M into buckets of size Θ(log2 n), and using one
packet B-tree structure per bucket to store only the marked rows within the
bucket, using their distance from the beginning of the bucket as the key.
This allows to spend O(log2 n) steps, each performed in constant time on
a RAM machine. Overall, the locate operation (after the counting phase)
for all pattern occurrences takes O(occ log2 n) time in their scheme, with
space penalty only O(n/ log n) bits (which is absorbed in space complexity
by other components of their index).

Yet in the same work Ferragina and Manzini re�ned this solution to
obtain O(m + occ log1+ε n) time, with space of O(Hk(T) + log log n/ logε n)
bits, for any k ≥ 0. The main weakness of their algorithm is however the
assumption of a constant-size alphabet. The complexities of their solution,
concerning both space and time, have a sharp dependence on the alphabet
size; discussing possible ways to mitigate this dependence will be the subject
of Sect. 5.7 and 5.8. We note that with using a superalphabet Ferragina and
Manzini managed to reduce the 1+ε exponent to ε only, but from a practical
point this variant gets even more intractable.

Now, let us give the space and time complexities of the Ferragina and
Manzini index, not ignoring the alphabet size. The FM-index needs up to
5Hkn+O

(
(σ log σ + log log n) n

log n + nγσσ+1
)
bits of space, where 0 < γ <

1. The time to search for a pattern and obtain the number of its occurrences
in the text is O(m). The text position of each occurrence can be found in
O(σ log1+ε n) time, for some ε > 0 that appears in the sublinear terms of
the space complexity. Finally, the time to display a text substring of length

170 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

L is O(σ (L+log1+ε n)). The last operation is important not only to show a
text context around each occurrence, but also because a self-index replaces
the text and hence it must provide the functionality of retrieving any desired
text substring.

5.5 Rank and select in theory

In Sect. 5.4.2 we mentioned that e�cient implementation of the Occ func-
tion is crucial for both speed and space occupancy of any FM-index, and
that calculating Occ boils down to answering rank queries. Applications of
the related query, select , will be discussed later. We assume here that the
alphabet for rank and select is binary.

Constant-time solutions for both rank and select can be trivially ob-
tained via storing all answers explicitly. This requires O(n log n) bits though,
hence is prohibitive. A natural question arises, how much space is needed,
in addition to the bit-vector B, to resolve those queries in O(1) time. The
answer is that both structures need o(n) bits.

5.5.1 Constant-time rank

The solution for rank having both required properties is simple [Jac89,
Mun96, Cla96]. The sequence B is divided into blocks of size b = blog2 n/2c.
Consecutive blocks are grouped into superblocks of size s = bblog2 nc.

For each superblock j, 0 ≤ j ≤ bn/sc, we store a number Rs[j] =
rank(B, js). Array Rs needs overall n/b = O(n/ log n) bits as each Rs[j]
needs log2 n bits and there are n/s = n/(b log2 n) entries.

For each block k of superblock j = k div blog2 nc, 0 ≤ k ≤ bn/bc,
we store a number Rb[k] = rank(B, kb) − rank(B, js). Array Rb needs
(n/b) log2 s = O(n log log n/ log n) bits since there are n/b blocks overall
and each Rb[k] value needs log2 s = Θ(log log n) bits.

Finally, for every bit stream S of length b and for every position i inside
S, we precompute Rp[S, i] = rank(S, i). This requires O(2b × b × log b) =
O(
√

n log n log log n) bits.
Those structures need O(n/ log n+n log log n/ log n+

√
n log n log log n) =

o(n) bits. They permit computing rank in constant time as follows:

rank(B, i) = Rs[bi/sc]+Rb[bi/bc]+Rp[B[bi/bc×b+1 . . . bi/bc×b+b], i mod b]

This structure can be implemented with little e�ort and works fast. Yet,
consider its extra space, for example, for n = 230 bits. Rs poses a space

5.5. RANK AND SELECT IN THEORY 171

overhead of 6.67%, Rb of 60%, and Rp of 0.18%. Overall, the o(n) additional
space is 66.85% of n, which is hardly negligible.

5.5.2 Constant-time select

The constant time solution to select(B, j) is signi�cantly more complex than
for rank(B, i). Jacobson's attempt [Jac89] reached O(log log n) time, while
the �rst O(1)-time algorithm was presented by Clark [Cla96]. His select
structure requires 3n

dlog2 log2 ne +O(
√

n log n log log n) bits of extra space. The
algorithm is rather complicated and we do not present it here.

Instead, a constant-time implementation devised by the author of the dis-
sertation will be presented, which uses O(n log log n/

√
log n) bits of space in

addition to the vector B itself. Note that the space use is slightly lower than
for Clark's structure (although not as good as the most succinct achieve-
ments, to be listed later), but the main advantage of our construction lies
in its simplicity. After developing it, we noticed it resembles the Clark's
algorithm simpli�cation presented in [NM07, Sect. 6.1], still, our solution is
more succinct.

The problem considered here is to report the position of jth bit 1 in
bit-vector B[0 . . . n − 1] for an arbitrary j = 1 . . . m, where m is the total
number of bits 1 in B.

First, we store explicit answers for every j = ik, i = 0 . . . dm/ke − 1,
where k is a parameter �xed later; now we only state that k = O(polylog(n)).
In total, those answers occupy m log n/k bits, which is at most n log n/k bits.
In the further considerations we assume that B is dense, i.e., m is close to
n, and we avoid the term m in space formulas.

In this way, we obtained O(n/k) superblocks, of varying sizes, but never
smaller than k bits. We consider three kinds of superblocks, so they need
to be labeled, using in practice 2 bits each. The cost of labeling is then
O(n/k) bits. If a superblock size is at most bs1 = O(log2 n/ log log n) bits,
where the constant is set suitably (to be explained later), we divide it into
blocks of c log n bits, where again c is a small enough constant, then cal-
culate the rank for each block boundary relative to the beginning of the
superblock, and pack those ranks into a single machine word. Indeed, the
amount of blocks considered in a superblock is at most O(log n/ log log n),
the superblock size is O(polylog(n)), hence the ranks with the superblock
need only O(log log n) bits each, so the total amount of bits is O(log n),
which �ts a machine word. Answering select(B, j), if j falls in this kind of
a superblock, is based on lookups. First we �nd the (c log n)-bit block that
contains the desired position in O(1) time, and search the block again in

172 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

O(1) time. Both operations use 2-dimensional lookup tables (LUTs), that
is, they accept two arguments. Concerning the �rst LUT, one argument is
a bit-vector being the concatenation of �relative� ranks of size O(log log n)
bits each, for all O(log n/ log log n) blocks in a superblock, the other is the
position of index j in the superblock, that is j mod k, which is stored on
log k = O(log log n) bits. The constants mentioned above can be set in a
way to make the pair of arguments use up to e.g. log n/2 bits. The answers
returned by this LUT need O(log log n) bits. The arguments for the second
LUT are all O(log n/ log log n) block bits and again j mod k, and again
suitable constants must be set. Overall, the LUTs can be bounded with e.g.
O(
√

n log log n) bits of space.
In the second case the superblock size is between bs1 and bs2 = log3 n.

There are at most n/(bs1 +1) = O(n log log n/ log2 n) such superblocks, i.e.,
at most O(nk log log n/ log2 n) set bits in them. Pointing those set bits rel-
atively to the superblock beginning gives an extra O(log bs2) = O(log log n)
factor, i.e., in total we need O(nk(log log n)2/ log2 n) bits.

The third, �nal case is when the superblock size is above bs2. In this
case, the k answers are stored explicitly on log n bits each, but there are at
most n/ log3 n such superblocks, hence up to nk/ log2 n bits are used.

The query time in all cases is clearly O(1). Let us sum up the space
terms, in the order of introducing them: O(n log n/k +n/k +

√
n log log n+

n log log n log n/ log2 n+nk/ log3 n+nk(log log n)2/ log2 n) = O(n log n/k+
n log log n log n/ log2 n + nk(log log n)2/ log2 n) bits. This is minimized for
k = O(log1.5 n/ log log n), which leads to overall space O(n log log n/

√
log n+

n log log n/ log n + n log log n/
√

log n) = O(n log log n/
√

log n) bits. This is
slightly better in asymptotic terms than in Clark's solution, as promised.

To sum up, the presented O(1)-time solutions for rank and select need
O(n log log n/ log n) and O(n log log n/

√
log n) bits, respectively. An inter-

esting question is whether those complexities, although sublinear in n, can
still be improved. The answer is negative for rank , but positive for select .
Only recently it was found that the space lower bounds for both problems are
same, O(n log log n/ log n) bits in addition to the sequence itself, and were
proven for rank by Miltersen [Mil05] and for select by Golynski [Gol06].
Note that now the upper and lower bounds for both problems are same.
We point out that those results hold in the so-called systematic model, in
which the vector B is represented �as is�. In the unrestricted setting, the
bounds are better and now the upper and lower bounds are essentially equal
[P�at08, P�at09].

5.6. RANK AND SELECT IN PRACTICE 173

5.5.3 Rank and select for compressed sequences
So far, we assumed that the vector B is uncompressed, hence in total the
structure we work with requires n + o(n) bits. Interestingly, further re�ne-
ments [Pag99, RRR02] achieved constant time on the same queries by using
only nH0(B)+o(n) bits overall, where H0(B) is the zero-order entropy of B.
Note that in this case, even the access query, i.e., determining B[i] given i,
is not trivial to handle. Finally, Sadakane and Grossi [SG06] gave a solution
in which the main space term is only nHk(B), i.e., the kth-order entropy
of B, and the constant time complexities preserved. This is an ultimate
result, in a sense, but for rare sequences the lower order space terms may
dominate, hence the problem is not yet closed; for other results, see [MN07b]
and references therein.

If the alphabet is larger than binary, then all operations can be done in
O(log log σ) time using n(log2 σ + o(log σ)) bits of space [GMR06].

5.6 Rank and select in practice

In this section, we examine several practical variants supporting the oper-
ations rank and select , and we experimentally compare them against the
classic solutions. We also consider a novel operation, selectNext , being a
special kind of select , which, as we show, can be executed in a much simpler
and faster way than the general select . All those results, including extensive
experimental tests, were presented in [GGMN05].

5.6.1 Rank queries via popcounting
The term popcount (population count) refers to counting how many bits are
set in a bit array. We note that table Rp can be replaced by popcounting, as
Rp[S, i] = popcount(S & 1i). This permits removing the second argument
of Rp, which makes the table smaller. In terms of time, we perform an extra
and operation in exchange for either a multiplication or an indirection to
handle the second argument. The change is clearly bene�cial.

Popcounting can be implemented either with bit manipulation in a single
computer word or with table lookup. A simple, yet e�cient example of the
�rst kind is the formula:

popc = { 0, 1, 1, 2, 1, 2, 2, 3, ... }
popcount = popc[x & 0xFF] + popc[(x >> 8) & 0xFF]

+ popc[(x >> 16) & 0xFF] + popc[x >> 24]

174 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

where popc is a precomputed popcount table indexed by bytes (0, 1, . . . , 255).
The width of the argument of the precomputed table was �xed at 8

bits and b at 32 bits, hence requiring 4 table accesses. In a more general
setup, we can choose b = log(n)/k and the width of the table argument to
be log(n)/(rk), for integer constants r and k. Thus the number of table
accesses to compute popcount is r and the space overhead for table Rb is
k log log(n)/ log(n). We cannot choose too small r and k though, as the the
size of table popc is n

1
rk log log(n). Clearly, we need rk > 1, which yields a

space/time tradeo�.
In practice, b should be a multiple of 8 because the solutions to popcount

work at least by chunks of whole bytes. With the setting s = b log n, and
considering the range 216 < n ≤ 232 to illustrate, the overall extra space
(not counting Rp) is 112.5% with b = 8, 62.5% with b = 16, 45.83% with
b = 24 and 34.38% with b = 32.

We have tried the reasonable (k, r) combinations for b = 16 and b = 32:
(1) b = 32 and a 16KB popc table needing 2 accesses for popcount , (2)
b = 16 and a 16KB popc table needing 1 access for popcount , (3) b = 16
and a 256-byte popc table needing 2 accesses for popcount , and (4) b = 32
and a 256-byte popc table needing 4 accesses for popcount . Other choices
require too much space or too many table accesses. We have also excluded
b = 8 because its space overhead is too high and b = 24 because it requires
non-aligned memory accesses.

Figure 5.3 (left) shows execution times for n = 212 to n = 230 bits. For
each size we randomly generate 200 arrays and average the times of 1 000 000
rank queries over each. We compare the four alternatives above as well as
the mentioned method that does not use tables. As it can be seen, the
combination (4), that is, b = 32 making 4 accesses to a table of 256 entries,
is the fastest in most cases, and when it is not, the di�erence is negligible.

On the other hand, it is preferable to read word-aligned numbers than
numbers that occupy other number of bits such as log n, which can cross
word boundaries and force reading two words from memory. In particular,
we have considered the alternative s = 28, which permits storing Rb elements
as bytes. The space overhead of Rb is thus only 25% with b = 32 (and 50%
for b = 16), and accesses to Rb are byte-aligned. The price for such a
small s is that Rs gets larger. For example, for n = 220 it is 7.81%, but the
sum is still inferior to the 34.38% obtained with the basic scheme s = b log n.
Actually, for little more space, we could store Rs values as full 32-bit integers
(or 16-bit if log n ≤ 16). The overhead factor due to Rs becomes now 32/256
(or 16/256), which is at most 12.5%. Overall, the space overhead is 37.5%,

5.6. RANK AND SELECT IN PRACTICE 175

close to the non-aligned version. Figure 5.3 (left) shows that this alternative
is the fastest, and it will be our choice for popcount-based methods.

Note that up to n = 220 bits, the original bit array together with the
additional structures need at most 176KB with b = 32, and 208KB with
b = 16. Thus the 256KB cache of the test machine accommodates the whole
structure. However, for n = 222, we need 512KB just for the bit array. Thus
the cache hit ratio decreases as n grows, which explains the increase in query
times that should be constant. For a systematic study of the cache e�ect
the reader is referred to [GGMN05].

5.6.2 Rank queries using a single level plus sequential scan
At this point we still follow the classical scheme in the sense that we have two
levels of blocks, Rs and Rb. This forces us to make two memory accesses in
addition to accessing the bit array block. We consider now the alternative of
using the same space to have a single level of blocks, Rs, with one entry each
s = 32k bits, and using a single 32-bit integer to store the ranks. To answer
a rank(B, i) query, we would �rst �nd the latest Rs entry that precedes i,
and then sequentially scan the array, popcounting in chunks of w = 32 bits,
until reaching the desired position, as follows:

rank(B, i) = Rs[bi/sc] +
bi/wcw−1∑

j=b(bi/scs)/wc+1

popcount(B[jw + 1 . . . jw + w]) +

popcount(B[bi/wcw + 1 . . . bi/wcw + w] & 1i mod w)

Note that the sequential scan accesses at most k memory words, and
the space overhead is 1/k. Thus we have a space/time tradeo�. For exam-
ple, with k = 3 we have approximately the same space overhead as in our
preferred two-level version.

Figure 5.3 (right) compares the execution time of di�erent tradeo�s
against the best previous alternatives. For the alternative of using only
one level of blocks, we have considered extra spaces of 5%, 10%, 25%, 33%
(close to the space of our best two-level alternative), and 50%.

One can see that the direct implementation of the theoretical solution
is far from competitive: it wastes the most space and is among the slowest.
Our two-level popcount alternative is usually the fastest by far, showing that
the use of two levels of blocks plus an access to the bit array is normally
better than using the same space (and even more) for a single level of blocks.

176 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 12 14 16 18 20 22 24 26 28 30

tim
e(

m
ic

ro
se

c)

log(n)

b=32, no tables
b=32, 2 accesses

b=16, 1 access
b=16, 2 accesses
b=32, 4 accesses

s=256, b=32, 4 accesses

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 12 14 16 18 20 22 24 26 28 30

tim
e(

m
ic

ro
se

c)

log(n)

Classical >66%
Two-level 37.5%

One-level 5%
One-level 10%
One-level 25%
One-level 33%
One-level 50%

Figure 5.3: (Left) Comparison of di�erent popcount methods to solve rank . (Right)
Comparison of di�erent mixed approaches to solve rank : classical scheme, pop-
counting with two levels of blocks, and popcounting with one level of blocks

Yet, note that the situation is reversed for large n. The reason is the locality
of reference of the one-level versions: They perform one access to Rs and
then a few accesses to the bit array (on average, 1 access with 50% overhead,
1.5 accesses with 33% overhead and 2 accesses with 25% overhead). Those
last accesses are close to each other, thus from the second on they are surely
cache hits. On the other hand, the two-level version performs three accesses
(Rs, Rb, and the bit array) with no locality among them. When the cache hit
ratio decreases signi�cantly, those three nonlocal accesses become worse than
the two nonlocal accesses (plus some local ones) of the one-level versions.

Thus, which is the best choice among one and two levels depends on the
application. Two levels is usually better, but for large n one can use even
less space and be faster. Yet, there is no �xed concept of what is �large�, as
other data structures may compete for the cache and thus the real limit can
be lower than in presented experiments.

5.6.3 Select queries
A simple, yet O(log n) time, solution to select(B, j), is to binary search in
B the position i such that rank(B, i) = j and rank(B, i−1) = j−1. Hence,
the same structures used to compute rank(B, i) in constant time can be used
to compute select(B, j) in O(log n) time.

More e�cient than using rank(B, i) as a black box is to take advantage
of its layered structure, so as to �rst binary search for the proper superblock
using Rs, then binary search that superblock for the proper block using Rb,
and �nally binary search for the position inside the correct block.

For the search in the superblock of s bits, there are three alternatives:

5.6. RANK AND SELECT IN PRACTICE 177

 0

 0.5

 1

 1.5

 2

 2.5

 3

 12 14 16 18 20 22 24 26 28 30

tim
e(

m
ic

ro
se

c)

log(n)

Basic
(2a,3b)
(2b,3b)
(2c,3b)
(2c,3a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 12 14 16 18 20 22 24 26 28 30

tim
e(

m
ic

ro
se

c)

log(n)

1/log(n)
5%

10%
25%
33%
50%

Figure 5.4: (Left) Comparison of di�erent methods to solve select by binary search.
(Right) comparison of di�erent space overheads for select based on binary search

(2a) binary search using Rb, (2b) sequential search using Rb (since there
are only a few blocks inside a superblock), and (2c) sequential search using
popcount. The latter alternative consists of simply counting the number of
bits set inside the superblock, and has the advantage of not needing array
Rb at all. For the search in the last block of b bits, binary search makes little
sense because popcount proceeds anyway byte-wise, so we have considered
two alternatives: (3a) bytewise search using popcount plus bit-wise search
in the �nal byte, and (3b) sequential bit-wise search in the b bits.

In the case of select , the density of the bit array may be signi�cant. We
have generated bit arrays of densities (fraction of bits set) from 0.001 to 1.
For each density we randomly generated 50 di�erent arrays of each size. For
each array, the averages for the times of 400 000 select queries are given.

The results for the binary search version are almost independent of the
density of bits set in B, hence Fig. 5.4 (left) shows only the case of density
0.4. We �rst compare alternatives (2a, 3b), (2b, 3b) and (2c, 3b). Then,
as (2c, 3b) turns out to be the fastest, we consider also (2c, 3a), which is
consistently the best. Other plots demonstrate that the basic binary search
(not level-wise) is much slower than any other solution. In this experiment
we have used b = 32 and s = b log n.

Note that the best alternative only requires space for Rs (that is, 1/32),
as all the rest is solved with sequential scanning. Once it is clear that using
a single level is preferable for select , we consider speeding up the accesses to
Rs by using 32-bit integers (or 16-bits when log n ≤ 16). Moreover, we can
choose any sampling step of the form s = k × b so that the sequential scan
accesses at most k blocks and we pay 1/k overhead.

Figure 5.4 (right) compares di�erent space overheads, from 5% to 50%.

178 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

We also include the case of 1/ log n overhead, which is the space needed by
the version where Rs stores log n bit integers instead of 32 bits. It can be
seen that these word-aligned alternatives are faster than those using exactly
log n bits for Rs. Moreover, there is a clear cache e�ect as n grows. For
small n, higher space overheads yield better times as expected, albeit the
di�erence is not large because the binary search on Rs is a signi�cant factor
that smoothes the di�erences in the sequential search. For larger n, the
price of the cache misses during the binary search in Rs is the dominant
factor, thus lower overheads take much less time because their Rs arrays
are smaller and their cache hit ratios are higher. The sequential search, on
the other hand, is not so important because only the �rst access may be
non-local, all the following ones are surely cache hits. Actually, the variant
of 1/ log n overhead is �nally the fastest because for n = 30 it is equivalent
to 3.33% overhead.

The best alternative is the one that balances the number of cache misses
during binary search on Rs with those occurring in the sequential search
on the bit array. It is interesting, however, that a good solution for select
requires little space.

The original Clark's O(1)-time solution (cf. Sect. 5.5) was also imple-
mented and Fig. 5.5 shows its execution times (di�erent lines for di�erent
densities of the bit arrays). We note that, although the select time is O(1),
there are signi�cant di�erences for di�erent array sizes or di�erent densities
of the arrays (albeit of course those di�erences are bounded by a constant).
Note, for example, that for density 0.001 the search is extremely fast, as in
this case the structure boils down to storing all answers explicitly.

To understand all the plots, knowledge of Clark's solution is needed,
hence we omit a detailed discussion. We only point out the strange be-
havior at density 0.01 (times grow and then decrease with n), which is not
erroneous. This has to do with the �nal step of Clark's procedure, sequen-
tial scanning, which takes relatively long (but constant of course) time. For
larger n, at a �xed density, the scanning is performed over a smaller area,
and this basically explains the strange phenomenon.

The plot also shows the time for the binary search versions using 5%
and 50% space overhead. For very low densities (up to 0.005 and sometimes
0.01), Clark's implementation is superior. However, we note that for such
low densities, the select problem is trivially solved by explicitly storing all
the positions of all the bits set (that is, precomputing all answers), at a
space overhead that is only 32% for density 0.01. Hence this case is not
interesting. For higher densities, our binary search versions are superior
up to n = 222 or 226 bits, depending on the space overhead we chose (and

5.6. RANK AND SELECT IN PRACTICE 179

 0

 0.5

 1

 1.5

 2

 2.5

 3

 12 14 16 18 20 22 24 26 28 30

tim
e(

m
ic

ro
se

c)

log(n)

Clark d=0.001
Clark d=0.005
Clark d=0.01
Clark d=0.05
Clark d=0.1
Clark d=0.5

Clark d=1
Binary 5%

Binary 50%

Figure 5.5: Comparison of Clark's select on di�erent densities and two binary
search based implementations using di�erent space overheads

hence on how fast we want to be for small n). After some point, however, the
O(log n) nature of the binary search solution shows up, and the constant-
time solution of Clark �nally takes over. It should be emphasized that
Clark's implementation imposes a space overhead of 60% at least.

5.6.4 SelectNext queries
There are applications which require a restricted version of select , namely
select(B, i + 1) given j = select(B, i) + 1. This operation is called here
selectNext(B, j), and it gives the position of the �rst bit set in B[j . . . n], or
n+1 if no such bit set exists. As we will see in Sect. 5.8, this operation may
be useful (in theory, at least) in locating found patterns in the FM-Hu�man
index. Obviously, it is possible to make use of the formula selectNext(B, j) =
select(B, 1+ rank(B, j−1)). Instead we propose [GMN04a] a much simpler
and more e�cient solution, inspired by the rank structure.

We divide B like in the standard rank implementation, into blocks and
superblocks of sizes b and s, respectively. For each superblock j, 1 ≤ j ≤
bn/sc we store a number Ns[j] = selectNext(B, j × s + 1). Array Ns needs
overall O(n/ log n) bits since each Ns[j] value needs O(log n) bits.

For each block k of superblock j = k div blog nc, 1 ≤ k ≤ bn/bc, we
store Nb[k] = selectNext(B[j×s+1 . . . (j +1)×s], k× b− j×s+1). Array
Nb needs O(n log log n/ log n) bits since each Nb[k] needs O(log log n) bits,
as it represents a position inside a superblock of length O(log2 n).

180 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

Finally, for every bit stream S of length b and for every position i inside
S, we precompute Np[S, i] = selectNext(S, i). This requires O(2b × b ×
log b) = O(

√
n log n log log n) bits. Note that Np[S, i] = b + 1 if S[i . . . b]

contains all zeros.
As before, the structures require O(n log log n/ log n) bits, with exactly

the same overhead as for rank . With them, selectNext(B, i) can be answered
in O(1) time, as follows.

(1) Compute ib = bi/bcb and then pos = Np[B[ib +1 . . . ib + b], i− ib +1]. If
pos ≤ b, then there is a bit set in B[i . . . ib + b− 1] and we just return
ib + pos.

(2) Otherwise, selectnext(B, i) = selectnext(B, ib + b), so �nd the answer
corresponding to the beginning of the next block. Compute pos =
Nb[(bi/bc+ 1]. If pos ≤ s, then return b(ib + b)/scs + pos.

(3) Otherwise, there are all zeros in B[i . . . is + s− 1] where is = bi/scs, so
selectnext(B, i) = selectnext(B, is + s). Return Ns[bi/sc+ 1].

An even simpler solution, alternative to selectNext(B, i), is to sequen-
tially scan all the bits in B[i . . . n] until �nding a bit set. We search word
by word rather than bit by bit. When a non-zero word is �nally found, we
use a precomputed table that, for every byte, tells the position of the �rst
bit set. Then, in at most four access to the table, we �nd the position of
the �rst bit set in the word where the sequential scanning stopped. We have
considered other alternatives such as (1) using two accesses to a table of 216

entries for the last step, and (2) going by chunks of 16 bits and performing
one single access to a table of 216 entries for the last step, but these were
slightly worse.

Experiments show that the brute force solution (sequential scan) not
only requires much less extra space but also is consistently faster, even with
densities as low as 1000 (that is, where we have to scan 500 bits on average
to �nd the answer). It was also observed that the constant-time solution
worsens for lower densities because it is more probable to require more ac-
cesses (1, 2 or 3 table accesses). Finally, we point out that the solutions for
selectNext are signi�cantly faster than any solution for general select .

5.7 The wavelet tree

The main drawback of the FM-index is its severe dependence on the al-
phabet size, both in space and time (locate and display queries). Although
Ferragina and Manzini removed this weakness in a practical implementation

5.7. THE WAVELET TREE 181

[FM01], the resulting algorithm was a heuristic without interesting worst-
case complexities.

One of the �rst FM-indexes removing the sharp dependence on σ was
the succinct su�x array (SSA) from the technical report by Mäkinen and
Navarro [MN04b, Chap. 3] published in April 2004; its SSA name was given
in [MN05c]. A few months later Grabowski et al. [GMN04b] presented an-
other variant, FM-Hu�man, with similar complexities (with space worse
by a constant though). Both algorithms belong to the simplest existing
self-indexes, yet their space is bound in terms of order-0 entropy; for com-
pressible data those indexes may occupy less space than original text. Both
indexes handle the counting query in O(m log σ) time in the worst case and
in O(m(1 + H0)) time on average.

At the same conference (SPIRE 2004) Ferragina et al. [FMMN04] pre-
sented the alphabet-friendly FM-index (AF-FM), based on the idea of pariti-
tioning the BWT sequence, where the space was bounded in terms of order-k
entropy, more precisely nHk(T) + o(n log σ) bits. The worst-case time for
counting remained O(m(1 + log σ)).

Yet another index from this family was the run-length FM-index (RL-
FM) [MN04b, MN05c], using more space than AF-FM, O(nHk(T) log σ)
bits, but decreasing the counting time to O(m) if σ = polylog(n).

Finally, Ferragina et al. [FMMN07] improved their AF-FM index, retain-
ing its space, to reach O(m(1 + log σ/ log log n)) time for pattern counting,
which is O(m) for alphabets of polylogarithmic size. This achievement can
be called the ultimate FM-index.

All those mentioned results, with the exception of the FM-Hu�man by
Grabowski et al. (to be presented in detail in the next section), are based
on a simple ingenious data structure called the wavelet tree (WT) [GGV03].
This data structure allows to convert each Occ(c, i) query into log σ rank
operations for binary sequences. The idea is to decompose in the top level
(the root) of WT the original alphabet {1, 2, . . . , σ} into two groups: the left
half {1, 2, . . . , σ/2} and right half {σ/2 + 1, σ/2 + 2, . . . , σ}; symbols from
the �rst group will be denoted in the root with 0s and the symbols from the
second groups with 1s. This idea is applied recursively down to the leaves;
as the tree is balanced, any traversal from the root to a leaf requires visiting
Θ(log σ) levels.

Alg. 33, taken from [NM07, Sect. 9.4], shows in detail how the Occ
function is computed on a (binary) wavelet tree. The full invocation is WT-
Occ(c, i, 1, σ, root), Bv denotes the bit vector at tree node v, while vl and vr

are its left and right children.
Since rank over binary sequences can be easily implemented in O(1) time,

182 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

Alg. 33 WT-Occ(c, i, 1, σ, root)
1 if σ1 = σ2 then return i
2 σm = b(σ1 + σ2)/2c
3 if c ≤ σm

4 then return WT-Occ(c, rank0(B
v, i), σ1, σm, vl)

5 else return WT-Occ(c, rank1(B
v, i), σm + 1, σ2, vr)

it is clear that WT-Occ(c, i, 1, σ, root) is accomplished in O(log σ) time.
Mäkinen and Navarro [MN04b] postulated to replace the original bal-

anced WT with a Hu�man-shaped one; that is, the more frequent symbols
in the text have shorter paths from root to leaf and respectively rarer sym-
bols have longer paths. This reduced the average Occ time to O(H0(T))
(which is bounded by log σ), but deteriorates the worst case to O(log n).
In the same work they however presented a length-limited Hu�man cod-
ing variant where the longest codeword has O(log σ) bits, hence the worst
case for Occ remains logarithmic in the alphabet size. The compression loss
of this Hu�man variant compared to original one is negligible. The same
length-limited Hu�man idea can be used with FM-Hu�man [GMN04b].

We note yet that the improved AF-FM index [FMMN07] is based on
multi-ary wavelet trees, more sophisticated variant (generalization) which
allows to retain constant time rank for a sequence over an alphabet of size
O(logε n), and additionally keep this sequence compressed, in order-0 en-
tropy related amount of space.

The last of major (at least from the practical point) discoveries in FM-
indexes belongs again to Mäkinen and Navarro [MN07a]. They eventually
noticed that using zero-order compressed rank (e.g., from [RRR02]) together
with a single wavelet tree is enough to achieve Hk-related space of the index,
thus eliminating the sequence partitioning mechanism of AF-FM.

5.8 FM-Hu�man and its variants

In the previous section we showed a way to mitigate the large alphabet
size dependence of the FM-index. It was based on wavelet trees. In the
current section, an alternative approach is presented. In the basic variant,
we Hu�man-compress the text and then, as in the FM-index, apply the
Burrows�Wheeler transform over it. The resulting structure can be regarded
as an FM-index built over a binary sequence. This way we obtain only a
mild (logarithmic in the worst case) dependence on the alphabet size.

The proposed index needs up to n(2H0 + 3 + ε)(1 + o(1)) bits of space,

5.8. FM-HUFFMAN AND ITS VARIANTS 183

for any 0 < ε < 1. It solves counting queries in O(m(H0 + 1)) average
time. The text position of each occurrence can be located in worst-case
time O

(
1
ε (H0 + 1) log n

)
. Any text substring of length L can be displayed

in O ((H0 + 1)L) average time, in addition to the mentioned worst-case time
required to locate a text position. In the worst case all the terms (H0 + 1)
in the time complexities become log n.

We also study several variants of the original index that reduce the term
2 in front of the space complexity, such as based on K-ary Hu�man and
Kautz�Zeckendorf (also called Fibonacci) coding [Kau65, Zec72]. Our ex-
perimental results show that our index, albeit not among the most succinct,
is faster than the others in many practical cases, even if we let the other
indexes use much more space. Furthermore, our index is attractive for its
simplicity.

The idea was �rst presented in [GMN04b], and then developed and tested
in an optimized implementation in [GMNS05, PGNS06, GNP+06].

5.8.1 Basic idea
We start with presenting the original idea, based on binary Hu�man. The
notation used in this section will correspond to the one from Sect. 5.4. From
now on assume T already contains the terminator $ at the end2. To begin,
this text T will be Hu�man-compressed into a binary stream T ′ and the
codeword beginnings marked in Th (the �nal index will not store T ′ nor
Th). The idea is that, instead of searching T for P , we can Hu�man-encode
P into P ′ and search the binary text T ′ for P ′. There is a problem though:
we have to ensure that the occurrences of P ′ are codeword-aligned.

Def. 5.8.1. Let T ′[1 . . . n′] be the binary stream resulting from Hu�man-
compressing T , where n′ < (H0 +1) n since (binary) Hu�man poses a maxi-
mum representation overhead of 1 bit per symbol. Let Th[1 . . . n′] be a second
binary stream such that Th[i] = 1 i� i is the starting position of a Hu�man
codeword in T ′. In the Hu�man code, we ensure that the last bit assigned to
the end marker �$� is zero.

The reason for the �nal condition will be clear later. Note that this can
always be done, by making the node corresponding to �$� a left child of its
parent in the Hu�man tree.

2Thus the term nH0 will refer to this new text with terminator included. The di�er-
ence with the term nH0 corresponding to the text without the terminator is only O(log n),
and will be absorbed by the o(n) terms that will appear later in the space complexity.

184 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

Structure. We apply the Burrows�Wheeler transform over text T ′, so as
to obtain B = (T ′)bwt. Yet, in order to have a binary alphabet, T ′ will not
have its own special terminator character �$� (note that the end marker of T
is encoded in binary at the end of T ′, just as any other character of T). To
formally de�ne B we resort to the su�x array A′ of T ′, yet the �nal index
will not store A′.

Def. 5.8.2. Let A′[1 . . . n′] be the su�x array for text T ′, that is, a permuta-
tion of [1 . . . n′] such that T ′[A′[i] . . . n′] < T ′[A′[i + 1] . . . n′] in lexicographic
order, for all 1 ≤ i < n′. In these lexicographic comparisons, if a string x is
a pre�x of y, we assume x < y.

Our index will represent A′ in succinct form, via array B and another
array Bh used to track the codeword beginnings in (T ′)bwt.

Def. 5.8.3. Let B[1 . . . n′] be a binary stream such that B[i] = T ′[A′[i]− 1]
(except that B[i] = T [n′] if A′[i] = 1). Let Bh[1 . . . n′] be another binary
stream such that Bh[i] = Th[A′[i]]. This tells whether position i in A′ points
to the beginning of a codeword.

Searching. The mechanism of searching over B with be basically the same
as in the FM-index. Again we need array C and function Occ, now applied
to T ′ and B. As the alphabet of T ′ (and other used sequences) is binary,
C and Occ can easily be computed in constant time using the function
rank . The extra space is sublinear in the length of the respective sequence.
Note that our C array has only two entries, which are easily precomputed.
Similarly, Occ can be expressed in terms of rank :

C[0] = 0 Occ(B, 0, i) = i− rank(B, i)
C[1] = n− rank(B,n′) Occ(B, 1, i) = rank(B, i)

Therefore, formulas C[c] + Occ(T bwt, c, i) in the search algorithm of
Alg. 32 are solved in FM-Hu�man by using rank on B.

There is a small twist, however, because we are not putting a terminator
to our binary sequence T ′ and hence no terminator appears in B. Let us
call �#� (# < 0 < 1) the terminator that should appear in T ′, so that it
is not confused with the terminator �$� of T . In the position p# such that
A′[p#] = 1, we should have B[p#] = #. Instead, we are setting B[p#] to
the last bit of T ′. This is the last bit of the Hu�man codeword assigned to
the terminator �$� of T , and it is zero according to De�nition 5.8.1. Hence
the correct B sequence would be of length n′ + 1, starting with 0 (which

5.8. FM-HUFFMAN AND ITS VARIANTS 185

Alg. 34 Hu�-FM_Count(B, Bh, n′, P ′, m′).
1 i ← m′

2 sp ← 1; ep ← n′

3 while (sp ≤ ep) and (i ≥ 1) do
4 if P ′[i] = 0 then
5 sp ← (sp − 1)− rank(B, sp − 1) + [sp − 1 < p#] + 1
6 ep ← ep − rank(B, ep) + [ep < p#]
7 else sp ← n′ − rank(B, n′) + rank(B, sp − 1) + 1
8 ep ← n′ − rank(B, n′) + rank(B, ep)
9 i ← i− 1
10 if ep < sp return 0 else return rank(Bh, ep)− rank(Bh, sp − 1)

corresponds to T ′[n′], the character preceding the occurrence of �#�), and
it would have B[p#] = #. To obtain the right mapping to our binary
B, we must add 1 to C[0] + Occ(B, 0, i) when i < p#. The computation of
C[1]+Occ(B, 1, i) remains unchanged. Overall, formula C[c]+Occ(T bwt, c, i)
is computed as follows

C[c]+Occ(T bwt, c, i) =
{

i− rank(B, i) + [i < p#], if c = 0,
n− rank(B,n′) + rank(B, i), if c = 1,

(5.2)

where p# = (A′)−1[1].
Therefore, by preprocessing B to solve rank queries, we can search B

exactly as in the FM-index. Our search pattern is not the original P , but
its binary encoding P ′[1 . . .m′] using the Hu�man code we applied to T .

The answer to that search, however, is di�erent from that of the search
of T for P . The reason is that the search of T ′ for P ′ returns the number
of su�xes of T ′ that start with P ′. Certainly these include the su�xes of T
that start with P , but also other su�xes of T ′ that do not start a Hu�man
codeword, yet start with P ′.

Array Bh now comes into play to �lter out those spurious occurrences.
In the range [sp . . . ep] found by the search of B′ for P ′, every bit set in
Bh[sp . . . ep] represents a true occurrence. Hence the true number of occur-
rences can be computed as rank(Bh, ep)− rank(Bh, sp − 1). Alg. 34 shows
the �nal search algorithm.

Analysis. The index stores B and Bh, each of n′ < (H0 + 1)n bits. The
extra space required by the rank structures is o(n′) = o((H0 + 1)n). The
only dependence on σ is that we must store the Hu�man code, for which
σ log n bits is su�cient (say, using a canonical Hu�man tree). Thus our
index requires at most 2n(H0 +1)(1+o(1))+σ log n bits. The latter term is

186 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

o(n) even for very large alphabets, σ = o(n/ log n). Note that alternative in-
dexes achieving kth-order compression [FMMN04, GGV03, GGV04, MN05c]
require σ = O(n1/k). The space of our index will grow slightly in the next
sections due to additional requirements for locating and displaying queries.

Let us now consider the time for counting queries. If we assume that the
characters in P have the same distribution of T (which holds in particular if
P is randomly chosen from T , or generated by the same statistical source),
then the length of P ′ is m′ < m(H0 + 1). This is the number of steps
to search B in Alg. 34, so the search complexity is O(m(H0 + 1)). Since
H0 ≤ log σ, our time is better than the O(m log σ) complexity of several
indexes [FMMN04, GGV03, GGV04]3.

We now analyze our worst-case search cost, which depends on the maxi-
mum height of a Hu�man tree with total frequency n. Consider the longest
root-to-leaf path in the Hu�man tree. The leaf symbol has frequency at
least 1. Let us traverse the path upwards and consider the (sum of) fre-
quencies encountered in the other branch at each node. These numbers
must be, at least, 1, 1, 2, 3, 5, . . ., that is, the Fibonacci sequence F (i).
Hence, a Hu�man tree with depth d needs that the text is of length at
least n ≥ 1 +

∑d
i=1 F (i) = F (d + 2) [WMB99, pp. 397]. Therefore, the

maximum length of a codeword is F−1(n) − 2 = logφ(n) − 2 + o(1), where
φ = (1 +

√
5)/2.

Thus, the encoded pattern P ′ cannot be longer than O(m log n) and this
is also the worst-case search cost. This matches the worst-case search cost
of the original CSA, while our average case is better. It is actually possible
to reduce our worst-case time to O(m log σ), without altering the average
search time nor the space usage, by forcing the Hu�man tree to become
balanced after level (1 + x) log σ, for some suitable constant x > 0. This
length-limited Hu�man variant, mentioned in Sect. 5.7, is analyzed in detail
in [MN04b].

5.8.2 Locate and display
Locating occurrences and displaying the context around the matches, i.e.,
several characters just preceding and just following each occurrence, belong
to basic functionalities of any indexes. Note also that since self-indexes
replace the text, in general one needs to extract arbitrary text substrings
from the index.

3In practice, those indexes can also achieve O(m(H0+1)) average time using Hu�man-
shaped wavelet trees.

5.8. FM-HUFFMAN AND ITS VARIANTS 187

The mechanism implementing those functionalities, originally given by
Ferragina and Manzini [FM00] and summarized in Sect. 5.4.3, can straight-
forwardly be adapted to FM-Hu�man (and other indexes from the FM fam-
ily).

First the time complexities for the locate operation in other indexes
should be presented. Given the su�x array interval that contains the occ
occurrences found, the FM-index locates each such position in O(σ log1+ε n)
time, for any 0 < ε < 1 (which a�ects the sublinear space component). Note
that we do not assume here a constant alphabet (as Ferragina and Manzini
did). The CSA can locate each occurrence in O(logε n) time, where ε is paid
in the space, nH0/ε. Similarly, a text substring of length L can be displayed
in time O(σ(L+log1+ε n)) by the FM-index and O(L+logε n) by the CSA.

In this section we show that our index � in spite of making use of the same
mechanism � can do better than the FM-index, although not as well as the
CSA. Using (1 + ε) n additional bits, we can locate each occurrence in time
O(1

ε (H0 + 1) log n) and display a text context in time O(L log σ + log n) in
addition to locating time. On average, if random text positions are involved,
the overall complexity to display a text interval is O((H0 + 1)(L + 1

ε log n)).
A �rst problem is how to extract, in O(occ) time, the occ positions of

the bits set in Bh[sp . . . ep]. This is easy using the select function. Actu-
ally we need a simpler version, selectNext(Bh, j), which gives the �rst 1 in
Bh[j . . . n].

Let r = rank(Bh, sp − 1). Then, the positions of the bits set in Bh
are select(Bh, r + 1), select(Bh, r + 2), . . ., select(Bh, r + occ). We recall
that occ = rank(Bh, ep) − rank(Bh, sp − 1). This can be expressed using
selectNext : The positions pos1 . . . posocc can be found as

pos1 = selectNext(Bh, sp),
pos i+1 = selectNext(Bh, pos i + 1).

To complete the locating and displaying processes, we need additional
structures.

Structure. We sample T ′ at approximately regular intervals, so that only
codeword beginnings can be sampled. A sampling parameter 0 < ε < 1
will control the density of the sampling and the corresponding space/time
tradeo�.

Def. 5.8.4. Given 0 < ε < 1, let ` = d2n′
εn log ne be the sampling step.

Our sampling of T ′ is a sequence S[1 . . . b εn
2 log nc], so that S[i] is the �rst

188 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

position of the codeword that covers position 1 + `(i − 1) in T ′, that is,
S[i] = select(Th, rank(Th, 1 + `(i− 1))).

Our index will include three additional structures called ST , TS , and
S. TS is an array storing the positions of A′ that point to the sampled
positions in T ′, in increasing text position order.

Def. 5.8.5. TS [1 . . . b εn
2 log nc] is an array such that TS [i] = j i� A′[j] =

S[i].

Array ST is formed using the same positions of A′, now sorted by posi-
tion in A′ and storing their position in T .

Def. 5.8.6. ST [1 . . . b εn
2 log nc] is an array such that ST [i] = rank(Th,A′[j]),

where j is the ith position in A′ that points to a position present in S.

Finally, S[i] tells whether the ith entry of A′ that points a codeword
beginning, points to sampled a text position. S will be further processed for
rank queries.

Def. 5.8.7. S[1 . . . n] is a bit array such that S[i] = 1 i� A′[select(Bh, i)]
is in S.

Locating. We have to determine the text position corresponding to an
entry A′[i] for which Bh[i] = 1, that is, a valid occurrence. Use bit ar-
ray S[rank(Bh, i)] to determine whether A′[i] points or not to a codeword
beginning in position in ST [rank(S, rank(Bh, i))] and we are done. Oth-
erwise, just as with the FM-index, determine position i′ whose value is
A′[i′] = A′[i] − 1. Repeat this process, which corresponds to moving back-
ward bit by bit in T ′, until a new codeword beginning is found, that is,
Bh[i′] = 1. Then check again whether this position is sampled, and so on
until �nding a sampled codeword beginning. If we �nally obtain position
pos after d repetitions, the answer is pos + d as we have moved backward d
positions in T .

It is left to specify how we determine i′ from i. In the FM-index, this
is done via the LF-mapping, i′ = C[T bwt[i]] + Occ(T bwt, T bwt[i], i). In our
index, the LF-mapping over A′ is implemented using Eq. (5.2). Alg. 35 gives
the pseudocode for locating the text position of the occurrence at B[i]. It is
invoked for each i = select(Bh, r + k), 1 ≤ k ≤ occ, r = rank(Bh, sp − 1).

5.8. FM-HUFFMAN AND ITS VARIANTS 189

Alg. 35 Hu�-FM_Locate(i,B,Bh,S,ST).
1 d = 0
2 while S[rank(Bh, i)] = 0 do
3 do if B[i] = 0 then i = i− rank(B, i) + [i < p#]
4 else i = n′ − rank(B, n′) + rank(B, i)
5 while Bh[i] = 0
6 d = d + 1
7 return d + ST [rank(S, rank(Bh, i))]

Alg. 36 Hu�-FM_Display(l,r,B,Bh,S,ST ,TS).
1 j ← min{k, ST [rank(S, rank(Bh,TS [k]))] > r} /* binary search */
2 i ← TS [j]
3 p ← ST [rank(S, rank(Bh, i))]
4 L ← 〈 〉
5 while p ≥ l do
6 do L = B[i]× L
7 if B[i] = 0 then i ← i− rank(B, i) + [i < p#]
8 else i ← n′ − rank(B, n′) + rank(B, i)
9 while Bh[i] = 0
10 p ← p− 1
11 Hu�man-decode the �rst r − l + 1 characters from list L

Displaying. In order to display a text substring T [l . . . r] of length L =
r − l + 1, we start by binary searching TS for the smallest sampled text
position larger than r. Let j be the index found in TS . Given value i =
TS [j], we know that S[rank(Bh, i)] = 1 as i is a sampled entry in A′. The
corresponding position in T is ST [rank(S, rank(Bh, i))].

Once we �nd the �rst sampled text position that follows r, we know its
corresponding position i in A′. From there on, we move backwards in T ′ (via
the LF-mapping over A′), position by position, until reaching the �rst bit of
the codeword for T [r+1]. Then, we obtain the L preceding characters of T ,
by further traversing T ′ backwards, now collecting all its bits until reaching
the �rst bit of the codeword for T [l]. The bit stream collected is reversed
and Hu�man-decoded to obtain T [l . . . r]. Alg. 36 shows the pseudocode.

Analysis. Array TS requires εn
2 (1+o(1)) bits, since there are n′/` entries

and each entry needs log n′ ≤ log n + O(log log n) bits. Array ST requires
other εn

2 bits, as its entries require log n bits. Finally, array S preprocessed
for rank queries requires n(1+o(1)) bits. Overall, we spend (1+ε)n(1+o(1))
additional bits of space for locating and displaying queries. This raises the
�nal space requirement to n(2H0 + 3 + ε)(1 + o(1)) + σ log n bits. We
point out that the additive term 3n is pessimistic (it assumes the worst-case

190 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

redundancy of Hu�man coding) and for most real distributions it turns into
not much more than 1n.

Let us now consider the time for locating. This corresponds to the
maximum distance between two consecutive samples in T ′, as we traverse it
backwards until �nding a sampled position. In Sect. 5.8.1 we mentioned that
no Hu�man codeword can be longer than logφ n− 2 + o(1) bits. Therefore,
the distance between two consecutive samples in T ′, after the adjustment to
codeword beginnings, cannot exceed

`+logφ n−2+o(1) ≤ 2
ε
(H0+1) log n+logφ n−1+o(1) = O

(
1
ε
(H0 + 1) log n

)
,

which is therefore the worst-case locating complexity.
For the displaying time, each of the L characters obtained costs us

O(H0+1) on average because we obtain the codeword bits one by one. In the
worst case they cost us O(log n). Note that we might have to traverse some
additional characters from the next sampled position until reaching the text
area of interest. Finally, we must consider the O(log n) time for the binary
search of TS . Summing up, the time complexity is O((H0 +1)(L+ 1

ε log n))
on average and O(L log n + (H0 + 1)1

ε log n) in the worst case.

Theorem 5.8.1. Given a text T [1 . . . n] over an alphabet σ and with zero-
order entropy H0, the FM-Hu�man index requires up to n(2H0 + 3 + ε)(1 +
o(1)) + σ log n bits of space, for any constant 0 < ε < 1 �xed at con-
struction time. It can count the occurrences of P [1 . . . m] in T in average
time O(m(H0 + 1)) and worst-case time O(m log n). Each such occurrence
can be located in worst-case time O(1

ε (H0 + 1) log n). Any text substring of
length L can be displayed in time O((H0 + 1)(L + 1

ε log n)) on average and
O((L + (H0 + 1)1

ε) log n) in the worst case.

5.8.3 K-ary Hu�man
While storing B seems necessary as we are using zero-order compression of
T , doubling the space requirement to store Bh seems a waste of space. In
this section we explore a way to reduce the size of Bh. Instead of using
Hu�man over a binary coding alphabet, we can use a coding alphabet of
k > 2 symbols, so that each symbol needs dlog ke bits. Varying the value
of k yields interesting time/space tradeo�s. We use only powers of 2 for k
values, so that each symbol can be represented without wasting space.

The space usage varies in di�erent aspects. The size of B increases since
Hu�man's compression ratio degrades as k grows. B has length n′ < (H(k)

0 +

5.8. FM-HUFFMAN AND ITS VARIANTS 191

1)n symbols, where H
(k)
0 is the zero-order entropy of the text computed

using base k logarithm, that is, H
(k)
0 = H0/ log2 k. Therefore, the size of B

is bounded by n′ log k = (H0 + log k)n bits. The size of Bh, on the other
hand, is reduced since it needs one bit per symbol, that is n′ bits.

The total space used by B and Bh structures is then n′(1 + log k) <

n(H(k)
0 +1)(1+ log k), which is not larger than the space requirement of the

binary version, 2n(H0 + 1), for 1 ≤ log k ≤ H0. In particular, if we choose
log k = αH0, then the space is upper bounded by n((1 + α)H0 + 1 + 1/α),
which is optimized at α = 1/

√
H0 (that is, log k =

√
H0). Using this

optimal α value, the overall space required by B and Bh is n(
√

H0 + 1)2 <
n(H0 +1)(1+2/

√
H0). The original overhead factor of 2 over pure Hu�man

compression has been reduced to 1 + O(1/
√

H0).
The space for the rank structures changes as well. The rank structure for

Bh is computed in the same way of the binary version, and therefore its size
is reduced to o(H(k)

0 n) bits. To solve Occ(B, c, i) queries, we must build the
sublinear-size rank structures over σ virtual binary sequences Bc[1 . . . n′],
so that Bc[i] = 1 i� B[i] = c. Therefore, Occ(B, c, i) = rank(Bc, i) can
be computed in constant time. The size of those rank structures adds up
o(kH

(k)
0 n) bits. (The solution for rank requires accessing the bit vectors Bc,

but one can use B itself instead.)
If we use the optimum k derived above, the space for the rank structures

is o(n2
√

H0/
√

H0) extra space, which turns out to be still o(n) (more pre-
cisely, O(n/ log log n)) for H0 ≤ (log log n)2. This value is reasonably large
in practice.

Regarding the time complexities, the pattern has average length less than
m(H(k)

0 +1) symbols. This is the counting complexity, which is reduced as we
increase k. Using the value k = 2

√
H0 that optimizes the space complexity,

the counting time is O(m
√

H0). On the other hand, the counting time can
be made O(m) by using a constant α. For locating queries and displaying
text, we need the same additional structures TS, ST and S as for the
binary version. The k-ary version can locate the position of an occurrence
in O

(
1
ε (H

(k)
0 + 1) log n

)
time, which is the maximum distance between two

sampled positions. Similarly, the time used to display a substring of length
L becomes O((H(k)

0 + 1)(L + 1
ε log n)) on average and O(L log n + (H(k)

0 +
1)1

ε log n) in the worst case. Again, with the optimum k, H
(k)
0 is

√
H0, and

it can be made O(1) by using a constant α.

192 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

5.8.4 Kautz�Zeckendorf coding
The previous section aimed at reducing the size of Bh in exchange for in-
creasing the size of other structures. In this section we attempt to get rid
of the Bh array completely, by replacing Hu�man coding with another for
which the bit stream itself enables synchronization at codeword boundaries.
Our solution is based on a representation of integers �rst advocated by Kautz
[Kau65] for its synchronization properties, that presents each number in a
unique form as a sum of Fibonacci numbers. This technique is better known
from a work by Zeckendorf [Zec72], therefore we will call itKautz�Zeckendorf
(KZ) coding. (The name of Fibonacci coding is also used in the literature.)

Consider the (slightly displaced) Fibonacci sequence 1, 2, 3, 5, 8, 13, . . .,
that is, f1 = 1, f2 = 2, and fi+2 = fi+1 +fi. It is easy to prove by induction
that any integer N can be uniquely decomposed into a sum of Fibonacci
numbers, where each summand is taken at most once and no two consecutive
numbers are used in the decomposition. (If two consecutive numbers fi and
fi+1 appear in the decomposition, we can use fi+2 instead.) Thus we can
represent N as a bit vector, whose ith bit is set i� the ith Fibonacci number
is used to represent N . Obviously, no two consecutive bits can be set in this
representation. This can be generalized to k consecutive ones [Kau65]. The
recurrence is now fi = i for i ≤ k and fi+k = fi+k−1+fi+k−2+. . .+fi+1+fi.
In this representation we do not permit a sequence of k consecutive numbers
in the decomposition, and thus no stream of k 1s appears in the bit vector.

We use this encoding as follows. The source symbols are sorted by
frequency and then the KZ codeword of number N is assigned to Nth most
frequent symbol for all N . In addition, all the encodings are prepended with
a sequence of k 1s followed by one 0.

If, during the LF-mapping, we read a 0 and then k successive 1s from T ′,
we know that we are at a codeword beginning. Thus, Bh is no longer needed.
This is expected to outweigh the fact that the encoding is not optimal as
Hu�man. An important side-e�ect is also that there is no need for select
(or selectNext) to �nd the successive matches: they all are in a contiguous
range in A′. All the rest of the operatory remains unchanged.

5.8.5 Other space-time tradeo�s
There are other alternatives to binary Hu�man coding, apart from k-ary
Hu�man. Most of them are intended to diminish the Bh array or even
eliminate it completely. We present several of these ideas in this section.
None of them, however, has been implemented so far. We also want to

5.8. FM-HUFFMAN AND ITS VARIANTS 193

stress that most of the analyses presented across this section are only rough
and intended to get an idea of which techniques could be interesting for
future development.

Replacing Bh with the Raman et al. structure. Raman et al. [RRR02]
showed how to represent a bit vector Bh of size n′ in only n′H0(Bh) +
O(n′ log log n′/ log n′) bits of space, with rank and select queries handled in
O(1) time. Thus we can use this structure for replacing Bh and its rank
helper structure. (Note that using this representation for B is unlikely to
bring any gain, as the amounts of 0s and 1s in a Hu�man stream are almost
equal, which implies H0(B) being almost 1.) Let us �rst disregard the
sublinear part of the space complexity. The entropy-related component of
the size is n′H0(Bh) = n log2

n′
n +(n′−n) log2

n′
n′−n . The second component is

easily upper bounded by (n′−n) log2(1+ n
n′−n) ≤ n/ ln(2). Now, n′/n is the

average Hu�man codeword length, which is upper bounded by H0+1 (being
H0 the zero-order entropy of the text T). Therefore, the space to represent
Bh using this alternative structure is at most n(1/ ln(2) + log2(H0 + 1)).
This size (albeit not our pessimistic upper bound) is never larger than the
n(H0 + 1) bits of our plain representation, and it can be signi�cantly less if
H0 is far away from 1.

For example, for the English text we use in Sect. 5.9, we have H0 = 4.8,
and this is also very close to the average Hu�man length. In this case,
Raman et al.'s structure requires less than 66% of the size of the original
Bh, which on the overall yields 17% less space than our structure on binary
Hu�man, and even 8% less than the version based on 4-ary Hu�man. The
time complexities are not a�ected.

Those promising space estimations are based on the assumption that
the sublinear component is negligible. However, a detailed analysis of the
sublinear-space part of the structure of Raman et al. reveals that it would
pose a signi�cant space overhead compared to our simpler solution. For
example, even for large n′ = 230, the overhead of the sublinear part would
still be around 100%, while ours is 37.5% (we use the fast rank implemen-
tation from [GGMN05], presented in Sect. 5.6.1). Overall, for n′ ≤ 230, the
solution requires at least 20% more space than our simpler solution, even
with k = 2. In addition, we note that implementing the structure of Ra-
man et al. is more complex than succinct structures considered so far for
the FM-Hu�man index. In even more theoretical setting, the Raman et al.
structure can be replaced with a more recent one from Sadakane and Grossi;
see Sect. 5.5.3 and references therein.

194 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

Cumulative rank for k-ary variants. A careful reader may notice some
asymmetry in the rank structure details for the binary and the k-ary imple-
mentations. The di�erence is that for the binary variant we needed a single
rank structure, i.e., storing the counts of the 1s only. Calculating the func-
tion Occ also for a given symbol 0 was straightforward. In the k-ary variant
(k > 2), we have exactly k rank structures. In this subsection we show how
to implement the rank operations using only k − 1 such structures for k
alphabet symbols. Unfortunately, this proposal does not seem practical.

The idea is to store in the jth rank structure (j = 0 . . . k − 2) not the
counts of symbols j, but rather the counts of all the symbols 0 . . . j. Let us
denote crank j this modi�ed structure storing cumulative rank j values. The
original rank j function values are obtained now as follows: rank j(B, i) =
crank j(B, i)−crank j−1(B, i), for j = 1 . . . k−2, rank0(B, i) = crank0(B, i),
and rankk−1(B, i) = i− crankk−2(B, i).

Note that in k − 2 out of k cases obtaining the rank value requires two
accesses to the crank structure, which contrasts with the original rank use,
where only one access is required. This also suggests that the only case
where this idea may be considered as potentially practical is the case of the
smallest k, i.e., k = 4. In space, we clearly use 75% of the original rank
which, according to Table 5.1 from Sect. 5.9, decreases the overall space
factor from 1.52n to 1.40n on English text. Note that the rank structure
for the Bh array is unchanged. In terms of search time, however, this idea is
expected to make searches about 1.5 times slower. This is because a pattern
search is dominated by the rank operations, and here for symbols 0 and
3 a single rank operation is used while for the two remaining symbols we
need two operations. Under the realistic assumption of approximately equal
probability of each of the k symbols in the compressed stream, we obtain
the 1.5 slowdown factor.

Sparse representation of Bh. Imagine a very large alphabet and also a
relatively large zero-order entropy H0 of the text. In this case the array Bh
will consist of mostly zeros. More precisely, between n′/(H0 +1) and n′/H0

bits from Bh will be zeros. The theoretical idea we propose is to replace
the original Bh with a multilevel structure. The top level array will store
dn′/he bits, where h is some parameter to �x soon. Each bit of this array
corresponds to an h-bit chunk in Bh, and it will be 1 i� its chunk contains
some bit set. If h is small enough compared to H0, most of those h-bit
chunks will contain all zeros, which is bene�cial since the rank structures
will not be built over those chunks. Performing rank for Bh will be replaced

5.9. EXPERIMENTAL RESULTS 195

in this variant with two rank operations: one for the top level array which
will return the number of non-zero h-bit chunks from the beginning of Bh,
and one for the second level of the structure, which stores information about
1s in the non-zero chunks. It is easy to �nd that the optimal h in terms of
minimizing the worst-case space is O(

√
H0 + 1), for which we need at most

2n
√

H0 + 1 bits (approximately) for such Bh substitute.
It is possible to generalize this idea to more than two levels. With i

levels we obtain O((i + 1)n(H0 + 1)(1/(i+1))) space, with O(i) access cost to
our Bh representation. The space for Bh is optimized for i = ln(H0 + 1),
where it reaches en ln(H0 + 1) bits.

Note that each access to Bh costs O(log(H0 + 1)) in time. Recall that
the array Bh is accessed only twice in a counting query, but many times in
locating and displaying queries.

5.9 Experimental results

Implementation of our indexes (original FM-Hu�man, its k-ary and the KZ
versions), required making some practical considerations that di�er from the
theoretical ones. The main di�erence is the calculation of rank and Occ,
where we used the solution described in [GGMN05], for the older index
variants (binary and k-ary FM-Hu�man), and a somewhat di�erent rank
implementation (see [PGNS06, Sect. 3]) for FM-KZ. The new indexes will
be called FM-KZ1 and FM-KZ2, corresponding to the parameters k = 1
and k = 2, respectively.

In this section we show experimental results on counting, reporting and
displaying queries and compare the e�ciency to existing indexes. The re-
sults were presented in the paper [PGNS06]. The indexes used for the ex-
periments were the FM-index implemented by Navarro [Nav04], Sadakane's
CSA [Sad00], the RLFM index [MN05c], the SSA index [MN05c] and the LZ
index [Nav04]. Other indexes whose implementations were available at the
time of experiments were not included because they are not comparable to
the FM-Hu�man / FM-KZ index due either to their large space requirement
or their high search times.

We considered three types of text for the experiments: 80MB of En-
glish text obtained from the TREC-3 collection 4 (�les WSJ87-89), 60MB
of DNA and 55MB of protein sequences, both obtained from the BLAST
database of the NCBI5 (�les month.est_others and swissprot respec-

4Text Retrieval Conference, http://trec.nist.gov
5National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov

196 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

tively).
The experiments were conducted on an Intel Xeon processor at 3.06 GHz,

2GB of RAM and 512KB cache, running Gentoo Linux 2.6.10. The codes
were compiled with gcc 3.3.5 using optimization option -O9.

Now we show the results regarding the space used by our index and later
the results of the experiments divided in query type.

5.9.1 Space results
For the experiments we considered the binary, the 4-ary, and the KZ versions
of our index. It is interesting to know how the space requirement of the
Hu�man-based index varies according to the parameter k. Table 5.1 (top)
shows the space that the index takes as a fraction of the text for di�erent
values of k and the three types of �les considered. These values do not
include the space required to report positions and display text. It should
also be mentioned that the value corresponding to the row k = 8 for DNA
actually corresponds to k = 5, since this is the total number of symbols to
code in this �le. Similarly, the value of row k = 32 for the protein sequence
corresponds to k = 24.

One can see that the space requirements are lowest for k = 4. For higher
values this space increases, although staying reasonable until k = 16. With
higher values the spaces are too high for these indexes to be comparable
to the rest. It would be interesting to study the time performance to the
versions of the index with k = 8 and k = 16. With k = 8, for some technical
reason, we do not expect an improvement on the query time since log k is
not a power of 2 and therefore the computation of Occ is slower. The version
with k = 16 could lead to a reduction in query time, but the access to 4
machine words for the calculation of Occ could negatively a�ect it. It is
important to say that these values are only relevant for the English text and
proteins, since it makes no sense to use them for DNA.

It is also interesting to see how the space requirement of the index is
divided among its di�erent structures. Table 5.1 (bottom) shows the space
used by each of the structures for the index with k = 2 and k = 4 for the
three types of texts considered.

For higher values of k the space used by B will increase since the use of
more symbols for the Hu�man codes increases the resulting space. On the
other hand, the size of Bh decreases at a rate of log k and so do its rank
structures. However, the space of the rank structures of B increases rapidly,
as we need k structures for an array that reduces its size at a rate of log k,
which is the reason of the large space requirement for high values of k.

5.9. EXPERIMENTAL RESULTS 197

Table 5.1: (Top) Space requirement of FM-Hu�man for di�erent values of k. (Bot-
tom) Detailed comparison of k = 2 versus k = 4. The spaces used by the Hu�man
table, the constant-size tables for rank , and array C, are omitted (negligible).

k Fraction of text
English DNA Proteins

2 1.68 0.76 1.45
4 1.52 0.74 1.30
8 1.60 0.91 1.43

16 1.84 � 1.57
32 2.67 � 1.92
64 3.96 � �

FM-Hu�man k = 2 FM-Hu�man k = 4

Structure Space [MB] Space [MB]
English DNA Proteins English DNA Proteins

B 48.98 16.59 29.27 49.81 18.17 29.60
Bh 48.98 16.59 29.27 24.91 9.09 14.80
Rank(B) 18.37 6.22 10.97 37.36 13.63 22.20
Rank(Bh) 18.37 6.22 10.97 9.34 3.41 5.55
Total 134.69 45.61 80.48 121.41 44.30 72.15
Text 80.00 60.00 55.53 80.00 60.00 55.53
Fraction 1.68 0.76 1.45 1.52 0.74 1.30

Now, let us take a look at the FM-KZ1 and FM-KZ2 space/time be-
havior. For DNA, the FM-KZ1 is a clear winner: among the fastest and
de�nitely the most succinct, also it is hard to imagine a simpler full-text
index (as the encoding is merely the unary code).

On the English text, FM-KZ2 is takes about 1.0n space, much less than
other indexes from our family, but is also considerably slower, e.g. more than
1.5 times slower than FM Hu�man with k = 4.

5.9.2 Counting queries
For the three �les, we show the search time as a function of the pattern
length, varying from 10 to 100, with a step of 10. For each length we

198 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

used 1000 patterns taken from random positions of each text. Each search
was repeated 1000 times. Figure 5.6 (left) shows the time for counting the
occurrences for each index and for the three �les considered. As the CSA
index needs a parameter to determine its space for this type of queries,
we adjusted it so that it would use approximately the same space that the
binary FM-Hu�man index.

We also show the average search time per character along with the min-
imum space requirement of each index to count occurrences. Unlike the
CSA, the other indexes do not need a parameter to specify their size for
counting queries. Therefore, we show a point as the value of the space used
by the index and its search time per character. For the CSA index we show
a line to resemble the space-time tradeo� for counting queries. The time
per character for each pattern length is the search time divided by the value
of the length. The time per character shown on the plot is the average of
these times for each length. Figure 5.6 (right) shows the search time per
character for each index and for each type of text.

5.9.3 Reporting queries
We measured the time that each index took to search for a pattern and
report the positions of the occurrences found. From the English text and
the DNA sequence we took 1000 random patterns of length 10. From the
protein sequence we used patterns of length 5. We measured the time per
occurrence reported varying the space requirement for every index except
the LZ, which has a �xed size. For the CSA we set the two parameters,
namely the size of the structures to report and the structures to count, to
the same value, since this turns out to be optimal. Figure 5.7 shows the
times per occurrence reported for each index as a function of its size.

5.9.4 Displaying text
We measured the time that each index took to show the �rst character of a
text context around the occurrences found. More precisely, this is the time
of searching for a pattern, locating the position of an occurrence and showing
one character of the text in the context area of the position located. We
measured this time as a function of the size used by each index. We used
the same 1000 patterns as in the reporting experiment. Figure 5.8 (left)
shows the average time to display the �rst character as a function of the
space needed for each index and for each type of text.

5.9. EXPERIMENTAL RESULTS 199

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90 100

tim
e

(m
ili

se
co

nd
s)

m

Search time on English text (80 Mb)

FM
LZ

RLFM
CSA L=8

SSA
FM-Huffman

FM-Huffman k=4
FM-Huffman k=16

FM-KZ2

 0

 0.0005

 0.001

 0.0015

 0.002

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

tim
e

pe
r

ch
ar

ac
te

r
(m

ili
se

co
nd

s)

space (fraction of the text)

Space v/s search time per character on English text (80 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90 100

tim
e

(m
ili

se
co

nd
s)

m

Search time on DNA (60 Mb)

FM
LZ

RLFM
CSA L=20

SSA
FM-Huffman

FM-Huffman k=4
FM-KZ1
FM-KZ2

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

tim
e

pe
r

ch
ar

ac
te

r
(m

ili
se

co
nd

s)

space (fraction of the text)

Space v/s search time per character on DNA (60 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-KZ1
FM-KZ2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90 100

tim
e

(m
ili

se
co

nd
s)

m

Search time on proteins (55 Mb)

FM
LZ

RLFM
CSA L=12

SSA
FM-Huffman

FM-Huffman k=4
FM-Huffman k=16

FM-KZ2

 0

 0.0005

 0.001

 0.0015

 0.002

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

tim
e

pe
r

ch
ar

ac
te

r
(m

ili
se

co
nd

s)

space (fraction of the text)

Space v/s search time per character on proteins (55 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

Figure 5.6: (Left) Search time as a function of the pattern length, English (80MB),
DNA (60MB) and proteins (55MB). The times of the LZ index do not appear on
the English text plot, as they range from 0.5 to 4.6 ms. In the DNA plot, the time
of the LZ index for m = 10 is 2.6. The reason of this increase is the large number
of occurrences of these patterns, which in�uences the counting time for this index.
(Right) Average search time per character as a function of the size of the index

200 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

tim
e

pe
r

oc
cu

rr
en

ce
 (

m
ili

se
co

nd
s)

space (fraction of the text)

Time to report an occurrence on English text (80 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

tim
e

pe
r

oc
cu

rr
en

ce
 (

m
ili

se
co

nd
s)

space (fraction of the text)

Time to report an occurrence on DNA (60 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-KZ1
FM-KZ2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

tim
e

pe
r

oc
cu

rr
en

ce
 (

m
ili

se
co

nd
s)

space (fraction of the text)

Time to report an occurrence on proteins (55 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

Figure 5.7: Time to report the positions of the occurrences as a function of the size
of the index. We show the results of searching on 80MB of English text, 60MB of
DNA and 55MB of proteins

In addition, we measured the time to display a context per character
displayed. That is, we searched for the 1000 patterns and displayed 100
characters around each of the positions of the occurrences found. We sub-
tracted from this time the time to display the �rst character and divided it
by the amount of characters displayed. Figure 5.8 (right) shows this time
along with the minimum space required for each index for the counting func-
tionality, since the display time per character does not depend on the size
of the index. This is not true for the CSA index, whose time to display per
character does depend on its size. For this index we show the time measured
as a function of its size.

5.9.5 Analysis of results
We can see that our FM-Hu�man k = 4 and k = 16 indexes are among
the fastest for counting queries for the three types of �les. The binary FM-
Hu�man index takes the same time that k = 4 version for DNA and it is
a little bit slower that the FM-index for the other two �les. As expected,

5.9. EXPERIMENTAL RESULTS 201

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

tim
e

pe
r

oc
cu

rr
en

ce
 (

m
ili

se
co

nd
s)

space (fraction of the text)

Time to display the first character on English text (80 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

tim
e

pe
r

ch
ar

ac
te

r
(m

ili
se

co
nd

s)

space (fraction of the text)

Space v/s time of display on English text (80 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

tim
e

pe
r

oc
cu

rr
en

ce
 (

m
ili

se
co

nd
s)

space (fraction of the text)

Time to display the first character on DNA (60 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-KZ1
FM-KZ2

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

tie
m

po
 p

er
 c

ha
ra

ct
er

 (
m

ili
se

co
nd

s)

space (fraction of the text)

Space v/s display time on DNA (60 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-KZ1
FM-KZ2

 0

 0.05

 0.1

 0.15

 0.2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

tim
e

pe
r

oc
cu

rr
en

ce
 (

m
ili

se
co

nd
s)

space (fraction of the text)

Time to display the first character on proteins (55 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

tim
e

pe
r

ch
ar

ac
te

r
(m

ili
se

co
nd

s)

space (fraction of the text)

Space v/s display time on proteins (55 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

Figure 5.8: (Left) Time to show the �rst character of a text context around the
positions of the occurrences as a function of the size of the index. From top to
bottom, we show the results of searching 80MB of English text, 60MB of DNA
and 55MB of proteins. In the plot of the DNA sequence, the point corresponding
to the LZ index is covered. Its value is: space=1.18, time=0.03. (Right) Time per
character displayed around an occurrence and space for each index

202 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

all those versions are faster than CSA, RLFM and LZ, the latter not being
competitive for counting queries. Regarding the space usage, the FM-index
turns out to be a better tradeo� alternative for the English text and protein
sequences, since it uses less space than our index and has low search times.
For DNA, all the Hu�man based versions of our index are good alternatives,
considering their low space requirement and search time.

Still, the new player, FM-KZ index, is a particularly good choice for
DNA. It is way ahead of the competition in the space use, while belonging
to the fastest. At the same time its simplicity is striking.

Considering both speed and space use, for the English text and the
proteins, the SSA index is the best choice, still, our variants come close,
especially for proteins.

For reporting queries, our index loses to the FM-index for English and
proteins, mainly because of its large space requirement. Also, it only sur-
passes the RLFM and CSA for large space usages. For DNA, however, our
index, with the two versions, is better than the FM-index. This reduction
in space is due to the low zero-order entropy of the DNA, which makes our
index compact and fast.

Regarding the time for displaying the �rst character, the FM-index is
faster than our index. Again, our index takes more space than the other
indexes to get competitive time for English and proteins, and reduces its
space for DNA. Regarding display time per character, our index with k = 4
is the fastest for DNA with a low space requirement, becoming an interesting
alternative for this type of query.

The version of our index with k = 4 improved both the space and time
with respect to the binary version and it became a very good alternative for
counting and reporting queries, especially for DNA, due to the low zero-order
entropy of this text.

5.10 Recent advancements in compressed indexes

The progress in the area of compressed indexes is amazingly fast. Basically,
we could list seven research directions here:

• Novel rank/select implementations, either theoretical or practical.
• Succinct su�x trees.
• Adding dynamic capabilities.
• External indexes.
• Word-based compressed indexes.
• Indexing structured text (XML in particular).

5.10. RECENT ADVANCEMENTS IN COMPRESSED INDEXES 203

• Handling more advanced queries, including approximate pattern match-
ing.

Now we are going to brie�y address the mentioned approaches.

New rank/select ideas. In Sect. 5.5.3 we mentioned some order-0 and
even order-k entropy bound solutions for rank and select . It took a few
years until experimental works for this topic started to appear. Sadakane
and Okanohara [OS07] presented a couple of practical variants for com-
pressed rank and select , while Claude and Navarro [CN08] proposed novel
implementations of the solutions of Raman et al. [RRR02] and Golynski
[GMR06]. Even without keeping the sequence in compressed form, there
still seems some room for improvement: Vigna [Vig08] showed e�cient rank
and select variations designed for 64-bit computer registers. The so-called
�broadword computing� is a recent trend, whose impact on indexes may go
beyond rank and select implementations, as the very recent work [Gog09]
on speeding up queries with CSA demonstrates.

Succinct su�x trees. Attempts to represent a su�x tree compactly have
a long history, but the �rst fully-functional compressed ST was presented
only recently, in 2007, by Sadakane [Sad07]. The space used in Sadakane's
solution was proportional to order-zero entropy of the text. This could be
improved to order-k entropy using techniques from [GGV03], but in any case
the structure has an overhead of 6n bits. This was removed in a variant by
Russo et al. [RNO08b], and soon the same result was presented even in a
dynamic setting [RNO08a]. Yet another variant, with space use in between
the Sadakane and Russo et al. structures, was presented in [FMN08].

Supporting dynamism. Yet the seminal paper by Ferragina and Manzini
[FM00] discussed how their scheme can be modi�ed to work with a collec-
tion of texts (e.g., web pages), which may shrink or grow over time, because
of insert or delete operations applied to whole texts (still, their time com-
plexities for the update operations hold only in the amortized sense). Other
ideas and novel algorithms were given in, among others, [CHL04, MN08].

External indexes. For huge enough text collections, even compressed in-
dexes may not �t in main memory. An interesting question is then if they can
compete in speed with existing non-compressed external full-text indexes,
particularly the String B-tree [FG99] and the disk-based SA [BYBZ96] men-
tioned earlier in this chapter. The existing structures are usually (non-

204 CHAPTER 5. COMPRESSED FULL-TEXT INDEXES

trivially) tailored variants of existing main-memory compressed indexes; e.g.,
the structure from [AN07] is a disk-based variant of LZ-index and the one
from [GN07a] is based on the FM-index. Especially the latter is a successful
data structure, according to experiments presented in [GN07a]: for com-
pressible data (like XML) it seems more interesting, both in counting and
locating, than other tested indexes, including the widely acclaimed String
B-tree.

Word-based compressed indexes. Texts in most human languages are
naturally segmented on space boundaries, but the notion of a �word� is help-
ful even in some mildly arti�cial data, like computer logs. The success of
word-targeted compression codes, described in the previous chapter, encour-
ages to use them also for indexing. In fact, compression has been widely
applied in inverted indexes, but in full-text indexes was introduced rather
recently [Fer08, FNP08]. Experiments in the latter of the cited works show
that for NL text (English) a word-based index from the FM family can reach
about 40% or less of the original size, at a practical speed. This is a signif-
icant improvement in comparison with character-based compressed indexes
(cf. [FGNV09]).

Indexing structured text. Ferragina et al. [FLMM06] proposed a BWT-
related transform for labeled trees (XML structure in particular), which,
combined with compression, enables fast searching in and navigation over
the tree. Very recently, Brisaboa et al. [BCN09] presented a structure called
XML wavelet tree which represents an XML in compressed form and per-
mits to answer XPath queries more e�ciently than without compression.
Undoubtedly, this research area is only starting to develop and many re�ne-
ments of existing techniques or perhaps even major discoveries are yet to
come.

Extended functionality. This area is still underdeveloped, with a few
works on approximate matching in compressed setting [HHLS06, CLS+06,
RNO07]. A compressed index with position-restricted searching was pro-
posed in [CHSV06]. Succinct su�x trees, mentioned above, may be able to
serve other matching models, with applications e.g. in bioinformatics.

The amazing progress in compressed indexes may revolutionize not only
the �eld of stringology, but even the way we perceive data structures in
general. It is conceivable to think that �compressed� is going to mean not
just �using less space� but �better in every aspect�.

Chapter 6

Conclusions

String matching is an exciting research �eld, since very easily formulated
problems have often rather sophisticated solutions and the abundance of
algorithmic approaches to classic tasks (exact matching, k-mismatches, k-
di�erences, etc.) proves the intrinsic richness of those fundamental combi-
natorial problems. In this dissertation we focused on selected research areas,
as the whole �eld is much too broad for the scope of this study.

In algorithmics, there are basically two kinds of results: one is solving
a particular problem (via presenting a novel algorithm for a given problem
with better properties than its predecessors, demonstrating a new compet-
itive data structure, showing an innovative analysis for an old algorithm
etc.) and the other is to present a more general technique, an idea which,
if applied appropriately, may serve to bring progress to many (sometimes
seemingly not too related) problems.

In this book we presented a fair amount of new string matching algo-
rithms, addressing many particular matching problems, but we are most
happy with two simple yet e�cient bit-parallel techniques which we worked
out in collaboration with Kimmo Fredriksson. One is about sampling text
in regular intervals, which transforms a single pattern matching task into
a multiple pattern matching �lter, and yet is suprisingly simple to imple-
ment using bit logic and e�cient especially on modern hardware (as the
experimental results contained in Chap. 1 clearly show). The other is to
replace multi-bit counters in algorithms that do maintain counters (which
are not uncommon), with a set of nested counters, the smallest of them used
most of the time and �ushed out periodically, thus enabling to handle more
counters at a time (in the amortized sense) and improving overall worst-case
time.

205

206 CHAPTER 6. CONCLUSIONS

We have reached several goals in our research. First, the mentioned novel
techniques proved useful, in practice and/or theory, for a number of clas-
sic string matching problems: single and multiple exact matching, match-
ing with local swaps, (δ, γ)-matching, k-mismatches, episode matching, and
more. Second, we signi�cantly broadened the set of tools for matching with
gaps, a class of models important in bioinformatics, but also in music infor-
mation retrieval. For example, one result we achieved sort of �en passent�
was an e�ective handling of negative gaps for (δ, α)-matching, using our bit-
parallel dynamic programming algorithm, a problem previously considered
hard. Third, our results added a brick or two to con�rm the importance of
compression in modern algorithmics. Searching a pattern directly in our q-
gram based compressed text was shown to be faster than in non-compressed
text. Although this is not the �rst achievement of this kind, our scheme
is a very simple example of compression supporting full-text searches, i.e.
working with arbitrary data. Another (minor) result in the area of online
compressed matching was an idea of making known dense codes (e.g., (s, c)-
DC), for a static text, even slightly denser, with using byte combinations not
occurring in the actual compressed stream. Finally, we proposed one of the
simplest known compressed full-text indexes (from the FM family), o�ering
fairly good space/time tradeo�s, and analyzed a number of its modi�cations.

A number of avenues explored in this work can be pursued further. For
example, the Shift-Or related technique of sampling text in regular intervals
can be adapted for matching over packed data, in particular, binary stream;
from the results contained in [FL09] we can expect our technique to be a
competitive one for this problem as well. Another future task (currently
under development) is to apply Matryoshka counters to improve yet a few
bit-parallel algorithms, e.g. the one from [HN06] for local similarity compu-
tation with unitary cost weights. The q-gram based scheme for compression
and search may be improved in some ways, as pointed out in conclusions
to Chap. 4, but another research possibility for compressed searching is to
get back to its roots and devise e�cient bit-wise Hu�man based implemen-
tations; the problem concerns match veri�cation, which can be served with
an extra stream of synchronizing data or a modi�cation of Hu�man coding
with almost no loss in compression and a small guaranteed synchronization
delay [Bis08].

The most general, yet strong, conclusion that we have come to is that
stringology is full of surprises and new light may be cast even on very old
problems. The revolution in hardware architecture which has started in
the last few years (broadword computing, multi-core CPUs, GPU massively
parallel programming, Flash memories as an alternative to spinning hard

207

disks) should also a�ect strongly the algorithmic designs and promote new,
more accurate, theoretical models of computations. It also seems certain,
for the predictable future, that the paradigms of bit-parallelism, making
use of wide machine words, and compression, which turns data into their
denser, more informative representations, will become almost ubiquitous in
state-of-the-art algorithms of tomorrow.

Bibliography

[AB92] A. Amir and G. Benson. Two-dimensional periodicity and its appli-
cations. In Proc. 3rd ACM-SIAM Annual Symposium on Discrete
Algorithms (SODA), pages 440�452. SIAM, 1992.

[Abe07] J. Abel. Incremental frequency count � a post BWT-stage for the
Burrows�Wheeler compression algorithm. Software�Practice and Ex-
perience, 37(3):247�265, 2007.

[ABF94] A. Amir, G. Benson, and M. Farach. An alphabet independent ap-
proach to two-dimensional pattern matching. SIAM Journal on Com-
puting, 23(2):313�323, 1994.

[AC75] A. V. Aho and M. J. Corasick. E�cient string matching: an aid to
bibliographic search. Communications of the ACM, 18(6):333�340,
1975.

[AC91] A. Apostolico and M. Crochemore. Optimal canonization of all sub-
strings of a string. Information and Computation, 95(1):76�95, 1991.

[ACH+01] A. Amir, R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. Over-
lap matching. In Proc. 12th ACM-SIAM Annual Symposium on Dis-
crete Algorithms (SODA), pages 279�288. SIAM, 2001.

[ACR99] C. Allauzen, M. Crochemore, and M. Ra�not. Factor oracle: a new
structure for pattern matching. In Proc. 26th Conference on Cur-
rent Trends in Theory and Practice of Computer Science (SOFSEM),
LNCS 1725, pages 291�306. Springer, 1999.

[AD86] L. Allison and T. I. Dix. A bit string longest common subsequence
algorithm. Information Processing Letters, 23(6):305�310, 1986.

[ADKF75] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev. On
economic construction of the transitive closure of a direct graph. So-
viet Mathematics, Doklady, 11:1209�1210, 1975. Original in Russian
in Doklady Akademii Nauk SSSR, vol. 194, 1970.

208

BIBLIOGRAPHY 209

[AdlFN05] J. Adiego, P. de la Fuente, and G. Navarro. Combining structural and
textual contexts for compressing semistructured databases. In Proc.
Int. Mexican Conference in Computer Science (ENC'05), pages 68�
73, Puebla, Mexico, 2005. IEEE CS Press.

[AE05] A. N. Arslan and Ö. Egecioglu. Algorithms for the constrained longest
common subsequence problems. International Journal of Foudations
of Computer Science, 16(6):1099�1109, 2005.

[AG86] A. Apostolico and R. Giancarlo. The Boyer�Moore�Galil string
searching strategies revisited. SIAM Journal on Computing, 15(1):98�
105, 1986.

[AG87] A. Apostolico and C. Guerra. The longest common subsequence prob-
lem revisited. Algorithmica, 2(1�4):315�336, 1987.

[AHHP94] A. Anderson, T. Hagerup, J. Hastad, and O. Petersson. The com-
plexity of searching a sorted array of strings. In Proc. 26th ACM
Symposium on the Theory of Computing (STOC), pages 317�325.
ACM Press, 1994.

[AHHP01] A. Andersson, T. Hagerup, J. Hastad, and O. Petersson. Tight
bounds for searching a sorted array of strings. SIAM Journal on
Computing, 30(5):1552�1578, 2001.

[AKO04] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing su�x trees
with enhanced su�x arrays. Journal of Discrete Algorithms, 2(1):53�
86, 2004.

[ALM02] O. Arbell, G. M. Landau, and J. S. B. Mitchell. Edit distance of run-
length encoded strings. Information Processing Letters, 83(6):307�
314, 2002.

[ALP00] A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string
matching with k mismatches. In Proc. 11th ACM-SIAM Annual Sym-
posium on Discrete Algorithms (SODA), pages 794�803. SIAM, 2000.

[ALPU05] A. Amir, O. Lipsky, E. Porat, and J. Umanski. Approximate matching
in the l1 metric. In Proc. 16th Annual Symposium on Combinatorial
Pattern Matching (CPM), LNCS 3537, pages 91�103. Springer, 2005.

[ALS96] A. Andersson, N. J. Larsson, and K. Swanson. Su�x trees on words.
In Proc. 7th Annual Symposium on Combinatorial Pattern Matching
(CPM), LNCS 1075, pages 102�115. Springer, 1996.

[ALS99] A. Apostolico, G. M. Landau, and S. Skiena. Matching for run-length
encoded strings. Journal of Complexity, 15:4�16, 1999.

210 BIBLIOGRAPHY

[AN07] D. Arroyuelo and G. Navarro. A Lempel�Ziv text index on secondary
storage. In Proc. 18th Annual Symposium on Combinatorial Pattern
Matching (CPM), LNCS 4580, pages 83�94, 2007.

[ANdlF07] J. Adiego, G. Navarro, and P. de la Fuente. Lempel�Ziv compression
of highly structured documents. Journal of the American Society for
Information Science and Technology (JASIST), 58(4):461�478, 2007.

[ANZ97] M. D. Araújo, G. Navarro, and N. Ziviani. Large text searching
allowing errors. In Proc. 4th South American Workshop on String
Processing, pages 2�20. Carleton University Press, 1997.

[Apo97] A. Apostolico. String editing and longest common subsequences. In
Handbook of Formal Languages, volume 2 Linear Modeling: Back-
ground and Application, chapter 8, pages 361�398. Springer, 1997.

[AR99] C. Allauzen and M. Ra�not. Factor oracle of a set of words. Tech-
nical Report 99-11, Institut Gaspard-Monge, Université de Marne-la-
Vallée, France, 1999.

[AT05] J. Abel and W. J. Teahan. Universal text preprocessing for data
compression. IEEE Transactions on Computers, 54(5):497�507, 2005.

[BAHM07] J. Barbay, L. Castelli Aleardi, M. He, and J. I. Munro. Succinct repre-
sentation of labeled graphs. Technical Report CS-2007-11, University
of Waterloo, Ontario, Canada, 2007.

[BCN09] N. Brisaboa, A. Cerdeira, and G. Navarro. A compressed self-indexed
representation of XML documents. In Proc. 13th European Con-
ference on Research and Advanced Technology for Digital Libraries
(ECDL), LNCS 5714, pages 273�284, 2009.

[BFG07] Ph. Bille, R. Fagerberg, and I. L. Gørtz. Improved approximate string
matching and regular expression matching on Ziv�Lempel compressed
texts. In Proc. 18th Annual Symposium on Combinatorial Pattern
Matching (CPM), LNCS 4580, pages 52�62. Springer, 2007.

[BFNE03] N. Brisaboa, A. Fariña, G. Navarro, and M. Esteller. (s,c)-dense
coding: An optimized compression code for natural language text
databases. In Proc. 10th Int. Symposium on String Processing and
Information Retrieval (SPIRE), LNCS 2857, pages 122�136. Springer,
2003.

[BFNP04] N. Brisaboa, A. Fariña, G. Navarro, and J. L. Paramá. Simple,
fast, and e�cient natural language adaptive compression. In Proc.
11th Int. Symposium on String Processing and Information Retrieval
(SPIRE), LNCS 3246, pages 230�241. Springer, 2004.

BIBLIOGRAPHY 211

[BFNP05] N. Brisaboa, A. Fariña, G. Navarro, and J. L. Paramá. E�ciently
decodable and searchable natural language adaptive compression. In
Proc. 28th Int. Conference on Research and Development in Infor-
mation Retrieval (SIGIR), pages 234�241. ACM Press, 2005.

[BFNP06] N. Brisaboa, A. Fariña, G. Navarro, and J. L. Paramá. Improving
semistatic compression via pair-based coding. In Proc. 6th Int. Con-
ference on Perspectives of System Informatics (PSI'06), LNCS 4378,
pages 124�134, 2006.

[BFNP07] N. Brisaboa, A. Fariña, G. Navarro, and J. L. Paramá. Lightweight
natural language text compression. Information Retrieval, 10:1�33,
2007.

[BGS72] M. Beeler, R. W. Gosper, and R. Schroeppel. HAKMEM. MIT
AI Memo 239, 1972. http://www.inwap.com/pdp10/hbaker/hakmem/
algorithms.html#item179 (link veri�ed Oct. 23, 2009).

[BHR00] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest com-
mon subsequence algorithms. In Proc. 7th Int. Symposium on String
Processing and Information Retrieval (SPIRE), pages 39�48. IEEE
Computer Society, 2000.

[Bil09] Ph. Bille. Fast searching in packed strings. In Proc. 20th Annual
Symposium on Combinatorial Pattern Matching (CPM), LNCS 5577,
pages 116�126, 2009.

[Bin00] E. Binder. Usenet group: comp.compression, 2000.

[BINP03] N. Brisaboa, E. Iglesias, G. Navarro, and J. L. Paramá. An e�cient
compression code for text databases. In Proc. 25th European Con-
ference on Information Retrieval Research (ECIR'03), LNCS 2633,
pages 468�481. Springer, 2003.

[Bis08] M. T. Biskup. Guaranteed synchronization of Hu�man codes. In Proc.
Data Compression Conference (DCC), pages 462�471, Snowbird, UT,
2008. IEEE Computer Society Press.

[BK00] B. Balkenhol and S. Kurtz. Universal data compression based on
the Burrows�Wheeler transformation: Theory and practice. IEEE
Transactions on Computers, 49(10):1043�1053, 2000.

[BKS99] B. Balkenhol, S. Kurtz, and Y. M. Shtarkov. Modi�cations of the
Burrows and Wheeler data compression algorithm. In Proc. Data
Compression Conference (DCC), pages 188�197, 1999.

[BM77] R. S. Boyer and J. S. Moore. A fast string searching algorithm.
Communications of the ACM, 20(10):762�772, 1977.

212 BIBLIOGRAPHY

[BMM97] A. Brodnik, P. B. Miltersen, and J. I. Munro. Trans-dichotomous
algorithms without multiplication � some upper and lower bounds.
In Proc. 5th Workshop on Algorithms and Data Structures (WADS),
LNCS 1272, pages 426�439. Springer, 1997.

[BR99] T. Berry and S. Ravindran. A fast string matching algorithm and
experimental results. In Proc. Prague Stringology Club Workshop '99,
pages 16�28, Czech Technical University, Prague, Czech Republic,
1999. Collaborative Report DC�99�05.

[Bre93] D. Breslauer. Saving comparisons in the Crochemore�Perrin string
matching algorithm. In Proc. 1st Annual European Symposium on
Algorithms (ESA), LNCS 726, pages 61�72. Springer, 1993.

[BSTW86] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally
adaptive data compression scheme. Communications of the ACM,
29(4):320�330, 1986.

[BW94] M. Burrows and D. J. Wheeler. A block-sorting lossless data com-
pression algorithm. Technical Report 124, Digital Equipment Corpo-
ration, Palo Alto, CA, 1994.

[BY89a] R. A. Baeza-Yates. E�cient text searching. Ph. D. Thesis, Depart-
ment of Computer Science, University of Waterloo, Ontario, Canada,
1989.

[BY89b] R. A. Baeza-Yates. Improved string searching. Software�Practice and
Experience, 19(3):257�271, 1989.

[BYBZ96] R. A. Baeza-Yates, E. F. Barbosa, and N. Ziviani. Hierarchies of
indices for text searching. Information Systems, 21(6):497�514, 1996.

[BYG89] R. A. Baeza-Yates and G. H. Gonnet. A new approach to text search-
ing. In Proc. 12th Int. Conference on Research and Development in
Information Retrieval (SIGIR), pages 168�175. ACM Press, 1989.

[BYG92] R. A. Baeza-Yates and G. H. Gonnet. A new approach to text search-
ing. Communications of the ACM, 35(10):74�82, 1992.

[BYN96] R. A. Baeza-Yates and G. Navarro. A faster algorithm for approx-
imate string matching. In Proc. 7th Annual Symposium on Combi-
natorial Pattern Matching (CPM), LNCS 1075, pages 1�23, Laguna
Beach, CA, 1996. Springer.

[BYN97] R. A. Baeza-Yates and G. Navarro. Multiple approximate string
matching. In Proc. 5th Workshop on Algorithms and Data Structures
(WADS), LNCS 1272, pages 174�184. Springer, 1997.

[BYN99] R. A. Baeza-Yates and G. Navarro. Faster approximate string match-
ing. Algorithmica, 23(2):127�158, 1999.

BIBLIOGRAPHY 213

[BYN00] R. A. Baeza-Yates and G. Navarro. Block-addressing indices for ap-
proximate text retrieval. J. of the American Society for Information
Science (JASIS), 51(1):69�82, January 2000.

[BYN04] R. A. Baeza-Yates and G. Navarro. Text Searching: Theory and
Practice, pages 565�597. Studies in Fuzzyness and Soft Computing
148. Springer, 2004. ISBN 3-540-20907-7.

[CCF05a] D. Cantone, S. Cristofaro, and S. Faro. An e�cient algorithm for δ-
approximate matching with α-bounded gaps in musical sequences.
In Proc. 4th Workshop on E�cient and Experimental Algorithms
(WEA), LNCS 3503, pages 428�439. Springer, 2005.

[CCF05b] D. Cantone, S. Cristofaro, and S. Faro. On tuning the (δ, α)-
sequential-sampling algorithm for δ-approximate matching with α-
bounded gaps in musical sequences. In Proc. 6th Int. Conference on
Music Information Retrieval (ISMIR), 2005.

[CCF08] D. Cantone, S. Cristofaro, and S. Faro. New e�cient bit-parallel al-
gorithms for the δ-matching problem with α-bounded gaps in musical
sequences. In Proc. 12th Prague Stringology Conference (PSC), pages
170�184, 2008.

[CCG+94] M. Crochemore, A. Czumaj, L. G�asieniec, S. Jarominek, T. Lecroq,
W. Plandowski, and W. Rytter. Speeding up two string matching
algorithms. Algorithmica, 12(4/5):247�267, 1994.

[CCI+99] E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos, L. Mouchard,
and Y. J. Pinzon. Algorithms for computing approximate repetitions
in musical sequences. In Proc. 10th Australasian Workshop on Com-
binatorial Algorithms (AWOCA), pages 129�144, 1999.

[CCI05] P. Cli�ord, R. Cli�ord, and C. S. Iliopoulos. Faster algorithms for δ, γ-
matching and related problems. In Proc. 16th Annual Symposium on
Combinatorial Pattern Matching (CPM), LNCS 3537, pages 68�78.
Springer, 2005.

[CGL04] R. Cole, L.-A. Gottlieb, and M. Lewenstein. Dictionary matching and
indexing with errors and don't cares. In Proc. 36th ACM Symposium
on the Theory of Computing (STOC), pages 91�100. ACM, 2004.

[CGR99] M. Crochemore, L. G�asieniec, and W. Rytter. Constant-space string-
matching in sublinear average time. Theoretical Computer Science,
218(1):197�203, 1999.

[CH92] R. Cole and R. Hariharan. Tighter bounds on the exact complexity of
string matching. In Proc. 33rd IEEE Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 600�609. IEEE Computer
Society Press, 1992.

214 BIBLIOGRAPHY

[CH97] R. Cole and R. Hariharan. Tighter upper bounds on the exact com-
plexity of string matching. SIAM Journal on Computing, 26(3):803�
856, 1997.

[CH98] R. Cole and R. Hariharan. Approximate string matching: A simpler
faster algorithm. In Proc. 9th ACM-SIAM Annual Symposium on
Discrete Algorithms (SODA), pages 463�472. SIAM, 1998.

[CHL04] H.-L. Chan, W.-K. Hon, and T. W. Lam. Compressed index for
a dynamic collection of texts. In Proc. 15th Annual Symposium on
Combinatorial Pattern Matching (CPM), LNCS 3109, pages 445�456,
2004.

[CHSV06] Y.-F. CHien, W.-K. Hon, R. Shah, and J. S. Vitter. Compressed text
indexing and range searching. Technical Report TR-06-021, Purdue
University, Department of Computer Science, 2006.

[CI04] R. Cli�ord and C. S. Iliopoulos. Approximate string matching for
music analysis. Soft Computing, 8:597�603, 2004.

[CIM+02] M. Crochemore, C. S. Iliopoulos, C. Makris, W. Rytter, A. Tsakalidis,
and K. Tsichlas. Approximate string matching with gaps. Nordic
Journal of Computing, 9(1):54�65, 2002.

[CIN+05] M. Crochemore, C. S. Iliopoulos, G. Navarro, Y. Pinzon, and
A. Salinger. Bit-parallel (δ, γ)-matching su�x automata. Journal
of Discrete Algorithms, 3(2�4):198�214, 2005.

[CIPR00] M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, and J. F. Reid. A
fast and practical bit-vector algorithm for the longest common sub-
sequence problem. In Proc. 11th Australasian Workshop on Combi-
natorial Algorithms (AWOCA), pages 75�86, 2000.

[CL92] W. I. Chang and J. Lampe. Theoretical and empirical comparisons of
approximate string matching algorithms. In Proc. 3rd Annual Sympo-
sium on Combinatorial Pattern Matching (CPM), LNCS 664, pages
175�184. Springer, 1992.

[CL94] W. I. Chang and E. L. Lawler. Sublinear approximate string matching
and biological applications. Algorithmica, 12(4/5):327�344, 1994.

[CL04] C. Charras and T. Lecroq. Handbook of Exact String Matching Algo-
rithms. King's College Publications, 2004.

[Cla96] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo,
Ontario, Canada, 1996.

[CLP98] C. Charras, T. Lecroq, and J. D. Pehoushek. A very fast string
matching algorithm for small alphabets and long patterns. In Proc.
9th Annual Symposium on Combinatorial Pattern Matching (CPM),
LNCS 1448, pages 55�64. Springer, 1998.

BIBLIOGRAPHY 215

[CLS+06] H.-L. Chan, T. W. Lam, W.-K. Sung, S.-L. Tam, and S.-S. Wong. A
linear size index for approximate pattern matching. In Proc. 17th An-
nual Symposium on Combinatorial Pattern Matching (CPM), LNCS
4009, pages 49�59. Springer, 2006.

[CM94] W. I. Chang and T. G. Marr. Approximate string matching and local
similarity. In Proc. 5th Annual Symposium on Combinatorial Pattern
Matching (CPM), LNCS 807, pages 259�273. Springer, 1994.

[CM05] J. S. Culpepper and A. Mo�at. Enhanced byte codes with restricted
pre�x properties. In Proc. 12th Int. Symposium on String Process-
ing and Information Retrieval (SPIRE), LNCS 3772, pages 1�12.
Springer, 2005.

[CM06] J. S. Culpepper and A. Mo�at. Phrase-based pattern matching in
compressed text. In Proc. 13th Int. Symposium on String Process-
ing and Information Retrieval (SPIRE), LNCS 4209, pages 337�345.
Springer, 2006.

[CMRS98] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Data com-
pression using antidictionaries. Technical Report IGM 98-10, Institut
Gaspard-Monge, Université de Marne-la-Vallée, France, 1998.

[CN08] F. Claude and G. Navarro. Practical rank/select queries over arbi-
trary sequences. In Proc. 15th Int. Symposium on String Process-
ing and Information Retrieval (SPIRE), LNCS 5280, pages 176�187.
Springer, 2008.

[CO06] L. P. Coelho and A. L. Oliveira. Dotted su�x trees a structure for
approximate text indexing. In Proc. 13th Int. Symposium on String
Processing and Information Retrieval (SPIRE), LNCS 4209, pages
329�336. Springer, 2006.

[Col91] L. Colussi. Correctness and e�ciency of the pattern matching algo-
rithms. Information and Computation, 95(2):225�251, 1991.

[CP91] M. Crochemore and D. Perrin. Two-way string-matching. The Jour-
nal of the ACM, 38(3):651�675, 1991.

[CT97] J. G. Cleary and W. J. Teahan. Unbounded length contexts for PPM.
The Computer Journal, 40(2/3):67�75, 1997.

[CW84] J. G. Cleary and I. H. Witten. Data compression using adaptive cod-
ing and partial string matching. IEEE Transactions on Computers,
32:396�402, 1984.

[Dal02] H. Dalianis. Evaluating a spelling support in a search engine. In Proc.
6th Int. Conference on Applications of Natural Language to Informa-
tion Systems�Revised Papers, LNCS 2553, pages 183�190, London,
UK, 2002. Springer.

216 BIBLIOGRAPHY

[Dam64] F. Damerau. A technique for computer detection and correction of
spelling errors. Communications of the ACM, 7(3):171�176, 1964.

[DC05] S. Deorowicz and M. G. Ciura. Correcting spelling errors by mod-
elling their causes. International Journal of Applied Mathematics and
Computer Science, 15(2):275�285, 2005.

[Deo02] S. Deorowicz. Second step algorithms in the Burrows�Wheeler com-
pression algorithm. Software�Practice and Experience, 32(2):99�111,
2002.

[Deo03] S. Deorowicz. Universal lossless data compression algorithms. Ph. D.
Thesis, Silesian University of Technology, Gliwice, Poland, 2003.

[Deo05] S. Deorowicz. Context exhumation after the Burrows�Wheeler trans-
form. Information Processing Letters, 95(1):313�320, 2005.

[Deo06] S. Deorowicz. Speeding up transposition-invariant string matching.
Information Processing Letters, 100(1):14�20, 2006.

[Deo07] S. Deorowicz. Fast algorithm for the constrained longest common
subsequence problem. Theoretical and Applied Informatics, 19(2):91�
102, 2007.

[Deo09] S. Deorowicz. An algorithm for solving the longest increasing circular
subsequence problem. Information Processing Letters, 109(12):630�
634, 2009.

[Deu96] P. Deutsch. [RFC 1951] DEFLATE Compressed Data Format Speci-
�cation version 1.3, 1996.

[DFG+97] G. Das, R. Fleischer, L. G�asieniec, D. Gunopulos, and J. Kärkkäinen.
Episode matching. In Proc. 8th Annual Symposium on Combinatorial
Pattern Matching (CPM), LNCS 1264, pages 12�27. Springer, 1997.

[DG09a] S. Deorowicz and Sz. Grabowski. A hybrid algorithm for the longest
common transposition-invariant subsequence problem. Computing
and Informatics, 2009. Accepted.

[DG09b] S. Deorowicz and Sz. Grabowski. On two variants of the longest
increasing subsequence problem. In Proc. Int. Conference on Man-
Machine Interactions (ICMMI), pages 541�549, 2009.

[DHPT09] B. Durian, J. Holub, H. Peltola, and J. Tarhio. Tuning BNDM with q-
grams. In Proc. Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 29�37. SIAM, 2009.

[DO09] S. Deorowicz and J. Obstój. Constrained longest common subse-
quence computing algorithms in practice. Technical report, Sile-
sian University of Technology, Gliwice, 2009. http://sun.aei.polsl.pl/
~sdeor/pub/tr_do2009.pdf.

BIBLIOGRAPHY 217

[Döm64] B. Dömölki. An algorithm for syntactical analysis. Computational
Linguistics, 3:29�46, 1964.

[EGGI92] D. Eppstein, Z. Galil, R. Giancarlo, and G. F. Italiano. Sparse dy-
namic programming I: Linear cost functions. The Journal of the
ACM, 39(3):519�545, 1992.

[Eli75] P. Elias. Universal codeword sets and representation of the integers.
IEEE Transactions on Information Theory, 21(2):194�203, 1975.

[Far97] M. Farach. Optimal su�x tree construction with large alphabets.
In Proc. 38th IEEE Annual Symposium on Foundations of Computer
Science (FOCS), pages 137�143, 1997.

[Fen96] P. M. Fenwick. Block sorting text compression��nal report. Report
130, Department of Computer Science, The University of Auckland,
New Zealand, 1996.

[Fer08] P. Ferragina. String algorithms and data structures. CoRR,
abs/0801.2378, 2008.

[FF07] P. Ferragina and J. Fischer. Su�x arrays on words. In Proc. 18th An-
nual Symposium on Combinatorial Pattern Matching (CPM), LNCS
4580, pages 328�339. Springer, 2007.

[FG99] P. Ferragina and R. Grossi. The string B-tree: A new data structure
for string search in external memory and its applications. The Journal
of the ACM, 46:236�280, 1999.

[FG04] G. Franceschini and R. Grossi. No sorting? Better searching! In Proc.
45th IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 491�498, 2004.

[FG05a] K. Fredriksson and Sz. Grabowski. E�cient algorithms for (δ, α)-
matching. Report A-2005-2, Department of Computer Science, Uni-
versity of Joensuu, 2005.

[FG05b] K. Fredriksson and Sz. Grabowski. Practical and optimal string
matching. In Proc. 12th Int. Symposium on String Processing and In-
formation Retrieval (SPIRE), LNCS 3772, pages 374�385. Springer,
2005.

[FG06a] K. Fredriksson and Sz. Grabowski. E�cient algorithms for (δ, γ, α)-
matching. In Proc. 11th Prague Stringology Conference (PSC), pages
29�40, 2006.

[FG06b] K. Fredriksson and Sz. Grabowski. E�cient algorithms for pattern
matching with general gaps and character classes. In Proc. 13th Int.
Symposium on String Processing and Information Retrieval (SPIRE),
LNCS 4209, pages 267�278. Springer, 2006.

218 BIBLIOGRAPHY

[FG06c] K. Fredriksson and Sz. Grabowski. E�cient bit-parallel algorithms for
(δ, α)-matching. In Proc. 5th Workshop on E�cient and Experimental
Algorithms (WEA), LNCS 4007, pages 170�181. Springer, 2006.

[FG06d] K. Fredriksson and Sz. Grabowski. A general compression algo-
rithm that supports fast searching. Information Processing Letters,
100(6):226�232, 2006.

[FG08a] K. Fredriksson and Sz. Grabowski. E�cient algorithms for (δ, γ, α)
and (δ, k∆, α)-matching. International Journal of Foudations of Com-
puter Science, 19(1):163�184, 2008.

[FG08b] K. Fredriksson and Sz. Grabowski. E�cient algorithms for pattern
matching with general gaps, character classes and transposition in-
variance. Information Retrieval, 11(4):335�357, 2008.

[FG09a] K. Fredriksson and Sz. Grabowski. Average-optimal string matching.
Journal of Discrete Algorithms, 7(4):579�594, 2009.

[FG09b] K. Fredriksson and Sz. Grabowski. Fast convolutions and their ap-
plications in approximate string matching. In Pre-Proc. 20th Int.
Workshop on Combinatorial Algorithms (IWOCA 2009), pages 363�
372, 2009.

[FG09c] K. Fredriksson and Sz. Grabowski. Nested counters in bit-parallel
string matching. In Proc. 3rd Int. Conference on Language and Au-
tomata Theory and Applications (LATA), LNCS 5457, pages 338�349.
Springer, 2009.

[FGM06] P. Ferragina, R. Giancarlo, and G. Manzini. The engineering of a com-
pression boosting library: Theory vs practice in BWT compression.
In Proc. 14th Annual European Symposium on Algorithms (ESA),
LNCS 4168, pages 756�767. Springer, 2006.

[FGNV09] P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed
text indexes: From theory to practice. ACM Journal of Experimental
Algorithmics, 13:article 12, 2009. 30 pages.

[FL08] S. Faro and T. Lecroq. E�cient variants of the backward-oracle-
matching algorithm. In Proc. 12th Prague Stringology Conference
(PSC), pages 146�160, 2008.

[FL09] S. Faro and T. Lecroq. An e�cient matching algorithm for encoded
DNA sequences and binary strings. In Proc. 20th Annual Symposium
on Combinatorial Pattern Matching (CPM), LNCS 5577, pages 106�
115. Springer, 2009.

[FLMM06] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Com-
pressing and searching XML data via two zips. In Proc. 15th Int.
Conference on World Wide Web, pages 751�760. ACM, 2006.

BIBLIOGRAPHY 219

[FM00] P. Ferragina and G. Manzini. Opportunistic data structures with
applications. In Proc. 41st IEEE Annual Symposium on Foundations
of Computer Science (FOCS), pages 390�398, 2000.

[FM01] P. Ferragina and G. Manzini. An experimental study of an oppor-
tunistic index. In Proc. 12th ACM-SIAM Annual Symposium on Dis-
crete Algorithms (SODA), pages 269�278. SIAM, 2001.

[FMMN04] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. An alphabet-
friendly FM-index. In Proc. 11th Int. Symposium on String Process-
ing and Information Retrieval (SPIRE), LNCS 3246, pages 150�160.
Springer, 2004.

[FMMN07] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed
representations of sequences and full-text indexes. ACM Transactions
on Algorithms (TALG), 3(2):article 20, 2007.

[FMN06] K. Fredriksson, V. Mäkinen, and G. Navarro. Flexible music retrieval
in sublinear time. International Journal of Foudations of Computer
Science, 17(6):1345�1364, 2006.

[FMN08] J. Fischer, V. Mäkinen, and G. Navarro. An(other) entropy-bounded
compressed su�x tree. In Proc. 19th Annual Symposium on Com-
binatorial Pattern Matching (CPM), LNCS 5029, pages 152�165.
Springer, 2008.

[FN04] K. Fredriksson and G. Navarro. Average-optimal single and multiple
approximate string matching. ACM Journal of Experimental Algo-
rithmics, 9:article 1.4, 2004. 45 pages.

[FN07] K. Fredriksson and F. Nikitin. Simple compression code supporting
random access and fast string matching. In Proc. 6th Workshop on
E�cient and Experimental Algorithms (WEA), LNCS 4525, pages
203�216. Springer, 2007.

[FNP08] A. Fariña, G. Navarro, and J. L. Paramá. Word-based statistical
compressors as natural language compression boosters. In Proc. Data
Compression Conference (DCC), pages 162�171. IEEE Computer So-
ciety Press, 2008.

[FP74] M. J. Fischer and M. Paterson. String matching and other prod-
ucts. In Proc. SIAM-AMS Complexity of Computation, pages 113�
125, 1974.

[Fre75] M. L. Fredman. On computing the length of longest increasing sub-
sequences. Discrete Mathematics, 11:29�35, 1975.

[Fre00] K. Fredriksson. Fast algorithms for string matching with and without
swaps. http://www.cs.uku.�/~fredriks/pub/papers/sm-w-swaps.pdf,
2000.

220 BIBLIOGRAPHY

[Fre02] K. Fredriksson. Faster string matching with super�alphabets. In Proc.
9th Int. Symposium on String Processing and Information Retrieval
(SPIRE), LNCS 2476, pages 44�57. Springer, 2002.

[Fre03] K. Fredriksson. Shift-Or string matching with super-alphabets. In-
formation Processing Letters, 87(4):201�204, 2003.

[FT03] K. Fredriksson and J. Tarhio. Processing of Hu�man compressed
texts with a super-alphabet. In Proc. 10th Int. Symposium on String
Processing and Information Retrieval (SPIRE), LNCS 2857, pages
108�121. Springer, 2003.

[Gag94] Ph. Gage. A new algorithm for data compression. The C Users
Journal, 12(2):23�38, 1994.

[Gal78] R. G. Gallager. Variation on a theme by Hu�man. IEEE Transactions
on Information Theory, 24(6):668�674, 1978.

[GB06] Sz. Grabowski and W. Bieniecki. Simple techniques for plagiarism
detection in student programming projects. In Proc. XIV Konferencja
Sieci i Systemy Informatyczne�Teoria, Projekty, Wdro»enia, pages
225�228, �ód¹, 2006.

[GBYS92] G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. New indices for text:
PAT trees and PAT arrays. In Information Retrieval Data Structures
& Algorithms. Prentice-Hall, 1992.

[GD08] Sz. Grabowski and S. Deorowicz. Nice to be a chimera: A hybrid al-
gorithm for the longest common transposition-invariant subsequence
problem. In Proc. Int. Conference on Modern Problems of Radio
Engineering, Telecommunications, and Computer Science (TCSET),
pages 50�54, Lviv, Ukraine, 2008.

[GF08] Sz. Grabowski and K. Fredriksson. Bit-parallel string matching un-
der Hamming distance in O(ndm/we) worst case time. Information
Processing Letters, 105(5):182�187, 2008.

[GG92] Z. Galil and R. Giancarlo. On the exact complexity of string match-
ing: upper bounds. SIAM Journal on Computing, 21(3):407�437,
1992.

[GGMN05] R. González, Sz. Grabowski, V. Mäkinen, and G. Navarro. Practical
implementation of rank and select queries. In Poster Proc. Volume
of 4th Workshop on E�cient and Experimental Algorithms (WEA),
pages 27�38, Greece, 2005. CTI Press and Ellinika Grammata.

[GGV03] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed
text indexes. In Proc. 14th ACM-SIAM Annual Symposium on Dis-
crete Algorithms (SODA), pages 841�850. SIAM, 2003.

BIBLIOGRAPHY 221

[GGV04] R. Grossi, A. Gupta, and J. S. Vitter. When indexing equals compres-
sion: experiments with compressing su�x arrays and applications. In
Proc. 15th ACM-SIAM Annual Symposium on Discrete Algorithms
(SODA), pages 636�645. SIAM, 2004.

[GKS03] R. Giegerich, S. Kurtz, and J. Stoye. E�cient implementation of lazy
su�x trees. Software�Practice and Experience, 33(11):1035�1049,
2003.

[GM07] T. Gagie and G. Manzini. Move-to-front, distance coding, and in-
version frequencies revisited. In Proc. 18th Annual Symposium on
Combinatorial Pattern Matching (CPM), LNCS 4580, pages 71�82.
Springer, 2007.

[GMN04a] Sz. Grabowski, V. Mäkinen, and G. Navarro. First Hu�man, then
Burrows�Wheeler: A simple alphabet-independent FM-index. Tech-
nical Report TR/DCC-2004-4, University of Chile, Department of
Computer Science, 2004.

[GMN04b] Sz. Grabowski, V. Mäkinen, and G. Navarro. First Hu�man, then
Burrows�Wheeler: An alphabet-independent FM-index. In Proc.
11th Int. Symposium on String Processing and Information Retrieval
(SPIRE), LNCS 3246, pages 210�211. Springer, 2004.

[GMNS05] Sz. Grabowski, V. Mäkinen, G. Navarro, and A. Salinger. A simple
alphabet-independent FM-index. In Proc. 10th Prague Stringology
Conference (PSC), pages 230�244, 2005.

[GMR06] A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on
large alphabets: a tool for text indexing. In Proc. 17th ACM-SIAM
Annual Symposium on Discrete Algorithms (SODA), pages 368�373.
ACM Press, 2006.

[GN04] Sz. Grabowski and G. Navarro. O(mn log σ) time transposition invari-
ant LCS computation. Technical Report TR/DCC-2004-6, University
of Chile, Department of Computer Science, 2004. ftp://ftp.dcc.uchile.
cl/pub/users/gnavarro/transpszymon.ps.gz.

[GN07a] R. González and G. Navarro. A compressed text index on secondary
memory. In Proc. 18th Int. Workshop on Combinatorial Algorithms
(IWOCA), pages 80�91. College Publications, UK, 2007.

[GN07b] R. González and G. Navarro. Compressed text indexes with fast
locate. In Proc. 18th Annual Symposium on Combinatorial Pattern
Matching (CPM), LNCS 4580, pages 216�227, 2007.

[GNP+06] Sz. Grabowski, G. Navarro, R. Przywarski, A. Salinger, and V. Mäki-
nen. A simple alphabet-independent FM-index. International Journal
of Foudations of Computer Science, 17(6):1365�1384, 2006.

222 BIBLIOGRAPHY

[Gog09] S. Gog. Broadword computing and Fibonacci code speed up com-
pressed su�x arrays. In Proc. 8th International Symposium on Ex-
perimental Algorithms (SEA), LNCS 5526, pages 161�172. Springer,
2009.

[Gol06] A. Golynski. Optimal lower bounds for rank and select indexes. In
Proc. 33rd Int. Colloquium on Automata, Languages and Program-
ming (ICALP), LNCS 4051, pages 370�381. Springer, 2006.

[GPR95] L. G�asieniec, W. Plandowski, and W. Rytter. Constant-space string
matching with smaller number of comparisons: sequential sampling.
In Proc. 6th Annual Symposium on Combinatorial Pattern Matching
(CPM), LNCS 937, pages 78�89. Springer, 1995.

[Gra99] Sz. Grabowski. Text preprocessing for Burrows�Wheeler block-
sorting compression. In Proc. VII Konferencja Sieci i Systemy
Informatyczne�Teoria, Projekty, Wdro»enia, pages 229�239, �ód¹,
1999.

[Gra08] Sz. Grabowski. Making dense codes even denser. Automatyka,
12(3):769�779, 2008.

[Gre04] I. Grebnov. The grzipII program. http://magicssoft.ru/?folder=
projects\&page=GRZipII, 2004.

[Gri07] N. Grimsmo. On performance and cache e�ects in substring indexes.
Technical Report IDI-TR-2007-04, NTNU, Department of Computer
and Information Science, Sem Salands vei 7-9, NO-7491 Trondheim,
NORWAY, 2007.

[GRRR04] R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple op-
timal representation for balanced parentheses. In Proc. 15th Annual
Symposium on Combinatorial Pattern Matching (CPM), LNCS 3109,
pages 159�172. Springer, 2004.

[GS83] Z. Galil and J. Seiferas. Time-space optimal string matching. Journal
of Computer and System Sciences, 26(3):280�294, 1983.

[GS03] Sz. Grabowski and �. Sturgulewski. An alternative traversal of the
su�x array for the worst case, 2003. Talk at Forum Informatyki
Teoretycznej (FIT).

[GT86] H. Gajewska and R. E. Tarjan. Deques with heap order. Information
Processing Letters, 22(4):197�200, 1986.

[Gus97] D. Gus�eld. Algorithms on strings, trees and sequences: computer
science and computational biology. Cambridge University Press, Cam-
bridge, 1997.

BIBLIOGRAPHY 223

[GV00] R. Grossi and J. S. Vitter. Compressed su�x arrays and su�x trees
with applications to text indexing and string matching. In Proc. 32nd
ACM Symposium on the Theory of Computing (STOC), pages 397�
406. ACM Press, 2000.

[Har71] M. C. Harrison. Implementation of the substring test by hashing.
Communications of the ACM, 14(12):777�779, 1971.

[Har95] D. Harman. Overview of the second text retrieval conference (TREC-
2). Information Processing and Management, 31(3):271�289, 1995.

[HD05] J. Holub and B. Durian. Fast variants of bit parallel approach
to su�x automata. Talk given in The Second Haifa Annual
International Stringology Research Workshop of the Israeli Sci-
ence Foundation, 2005. http://www.cri.haifa.ac.il/events/2005/string/
presentations/Holub.pdf.

[Hea78] H. S. Heaps. Information Retrieval-Computational and Theoretical
Aspects. Academic Press, 1978.

[HF04] L. He and B. Fang. Linear nondeterministic dawg string matching
algorithm. In Proc. 11th Int. Symposium on String Processing and
Information Retrieval (SPIRE), LNCS 3246, pages 70�71. Springer,
2004.

[HFN05] H. Hyyrö, K. Fredriksson, and G. Navarro. Increased bit-parallelism
for approximate and multiple string matching. ACM Journal of Ex-
perimental Algorithmics, 10:article 2.6, 2005. 27 pages. Special issue
for best papers of WEA'04.

[HHLS06] T. N. D. Huynh, W.-K. Hon, T. W. Lam, and W.-K. Sung. Approx-
imate string matching using compressed su�x arrays. Theoretical
Computer Science, 352(1-3):240�249, 2006.

[Hir75] D. S. Hirschberg. A linear space algorithm for computing maximal
common subsequences. Communications of the ACM, 18(6):341�343,
1975.

[Hir78a] D. S. Hirschberg. An information-theoretic lower bound for the
longest common subsequence problem. Information Processing Let-
ters, 7(1):40�41, 1978.

[Hir78b] D. S. Hirschberg. A lower worst-case complexity for searching a dictio-
nary. In Proc. 16th Annual Allerton Conference on Communication,
Control, and Computing, pages 50�53, 1978.

[HN06] H. Hyyrö and G. Navarro. Bit-parallel computation of local simi-
larity score matrices with unitary weights. International Journal of
Foudations of Computer Science, 17(6):1325�1344, 2006.

224 BIBLIOGRAPHY

[Hor80] R. N. Horspool. Practical fast searching in strings. Software�Practice
and Experience, 10(6):501�506, 1980.

[HS77] J. W. Hunt and T. G. Szymanski. A fast algorithm for comput-
ing longest common subsequences. Communications of the ACM,
20(5):350�353, 1977.

[Huf52] D. A. Hu�man. A method for the construction of minimum redun-
dancy codes. Proceedings of the IRE, 40(9):1098�1101, 1952.

[Hyy01] H. Hyyrö. Explaining and extending the bit-parallel algorithms of
Myers. Technical Report A-2001-10, University of Tampere, Finland,
2001.

[Hyy04] H. Hyyrö. Bit-parallel lcs-length computation revisited. In Proc. 15th
Australasian Workshop on Combinatorial Algorithms (AWOCA),
pages 16�27, University of Sydney, Australia, 2004.

[IR07] C. S. Iliopoulos and M. S. Rahman. New e�cient algorithms for
LCS and constrained LCS problem. In Proc. 3rd Algorithms and
Complexity in Durham Workshop, Durham, UK, September 2007.

[IR08a] C. S. Iliopoulos and M. S. Rahman. Indexing circular patterns. In
Proc. Workshop on Algorithms and Computation, Dhaka, Bangladesh,
February 2008.

[IR08b] C. S. Iliopoulos and M. S. Rahman. A new model to solve the swap
matching problem and e�cient algorithms for short patterns. In Proc.
34th Conference on Current Trends in Theory and Practice of Com-
puter Science (SOFSEM), LNCS 4910, pages 316�327. Springer, 2008.

[Jac89] G. Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie
Mellon University, 1989.

[Joh82] D. B. Johnson. A priority queue in which initialization and queue
operations take O(log log D) time. Mathematical Systems Theory,
15:295�309, 1982.

[KA03] P. Ko and S. Aluru. Space e�cient linear time construction of su�x
arrays. In Proc. 14th Annual Symposium on Combinatorial Pattern
Matching (CPM), LNCS 2676, pages 200�210. Springer, 2003.

[Kau65] W. Kautz. Fibonacci codes for synchronization control. IEEE Trans-
actions on Information Theory, 11:284�292, 1965.

[KB00] S. Kurtz and B. Balkenhol. Space e�cient linear time computation of
the Burrows and Wheeler transformation. In Numbers, Information
and Complexity, pages 375�383. Kluwer Academic Publishers, 2000.

BIBLIOGRAPHY 225

[KLV06] H. Kaplan, S. Landau, and E. Verbin. A simpler analysis of Burrows�
Wheeler based compression. In Proc. 17th Annual Symposium on
Combinatorial Pattern Matching (CPM), LNCS 4009, pages 282�293.
Springer, 2006.

[KMP77] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching
in strings. SIAM Journal on Computing, 6(1):323�350, 1977.

[KNM03] J. Kuri, G. Navarro, and L. Mé. Fast multipattern search algorithms
for intrusion detection. Fundamenta Informaticae, 56(1�2):23�49,
2003.

[Knu73] D. E. Knuth. The art of computer programming: Sorting and search-
ing, volume 3. Addison�Wesley, Reading, MA, 1973.

[Knu85] D. E. Knuth. Dynamic Hu�man coding. Journal of Algorithms,
6(2):163�180, 1985.

[KNU03] J. Kärkkäinen, G. Navarro, and E. Ukkonen. Approximate string
matching on Ziv�Lempel compressed text. Journal of Discrete Algo-
rithms, 1(3/4):313�338, 2003.

[KR87] R. M. Karp and M. O. Rabin. E�cient randomized pattern-matching
algorithms. IBM Journal of Research and Development, 31(2):249�
260, 1987.

[KS03] J. Kärkkäinen and P. Sanders. Simple linear work su�x array con-
struction. In Proc. 30th Int. Colloquium on Automata, Languages and
Programming (ICALP), LNCS 2719, pages 943�955. Springer, 2003.

[KS05] S. T. Klein and D. Shapira. Pattern matching in Hu�man encoded
texts. Information Processing and Management, 41(4):829�841, 2005.

[KSPP03] D. K. Kim, J. S. Sim, H. Park, and K. Park. Linear-time construction
of su�x arrays. In Proc. 14th Annual Symposium on Combinatorial
Pattern Matching (CPM), LNCS 2676, pages 186�199. Springer, 2003.

[KST94] J.-Y. Kim and J. Shawe-Taylor. Fast string matching using an n-gram
algorithm. Software�Practice and Experience, 24(1):79�88, 1994.

[KTSA99] T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Shift-And
approach to pattern matching in LZW compressed text. In Proc.
10th Annual Symposium on Combinatorial Pattern Matching (CPM),
LNCS 1645, pages 1�13. Springer, 1999.

[KU96a] J. Kärkkäinen and E. Ukkonen. Lempel�Ziv parsing and sublinear-
size index structures for string matching. In Proc. 3rd South American
Workshop on String Processing, pages 141�155. Carleton University
Press, 1996.

226 BIBLIOGRAPHY

[KU96b] J. Kärkkäinen and E. Ukkonen. Sparse su�x trees. In Proc.
2ndAnnual International Conference on Computing and Combina-
torics (COCOON), LNCS 1090, pages 219�230, 1996.

[Kuk92] K. Kukich. Techniques for automatically correcting words in text.
ACM Computing Surveys, 24(4):377�439, 1992.

[Lec07] T. Lecroq. Fast exact string matching algorithms. Information Pro-
cessing Letters, 102(6):229�235, 2007.

[LNP05] K. Lemström, G. Navarro, and Y. Pinzon. Practical algorithms for
transposition-invariant string-matching. Journal of Discrete Algo-
rithms (JDA), 3(2�4):267�292, 2005.

[LS99] J. N. Larsson and K. Sadakane. Faster su�x sorting. Technical Re-
port LU-CS-TR:99-214, LUNDFD6/(NFCS-3140)/1�20/(1999), De-
partment of Computer Science, Lund University, Sweden, May 1999.

[LU00] K. Lemström and E. Ukkonen. Including interval encoding into edit
distance based music comparison and retrieval. In Proc. of Symposium
on Creative & Cultural Aspects and Applications of AI & Cognitive
Science, pages 53�60, 2000.

[LV86] G. M. Landau and U. Vishkin. E�cient string matching with k mis-
matches. Theoretical Computer Science, 43(2�3):239�249, 1986.

[LV89] G. M. Landau and U. Vishkin. Fast parallel and serial approximate
string matching. Journal of Algorithms, 10(2):157�169, 1989.

[LZ76] A. Lempel and J. Ziv. On the complexity of �nite sequences. IEEE
Transactions on Information Theory, 22:75�81, 1976.

[Mäk00] V. Mäkinen. Compact su�x array. In Proc. 11th Annual Symposium
on Combinatorial Pattern Matching (CPM), LNCS 1848, pages 305�
319. Springer, 2000.

[Mäk03a] V. Mäkinen. Compact su�x array � a space e�cient full-text in-
dex. Fundamenta Informaticae, 56(1-2):191�210, 2003. Special Issue
- Computing Patterns in Strings.

[Mäk03b] V. Mäkinen. Parameterized approximate string matching and local-
similarity-based point-pattern matching. PhD thesis, Department of
Computer Science, University of Helsinki, August 2003.

[Man94] U. Manber. A text compression scheme that allows fast searching
directly in the compressed �le. In Proc. 5th Annual Symposium on
Combinatorial Pattern Matching (CPM), LNCS 807, pages 113�124.
Springer, 1994.

BIBLIOGRAPHY 227

[Man01] G. Manzini. An analysis of the Burrows�Wheeler transform. The
Journal of the ACM, 48(3):407�430, 2001. Prelim. version in
SODA'99.

[Man04] M. A. Maniscalco. A solution for context based blocksort com-
pression: The M03 algorithm. http://www.michael-maniscalco.com/
papers/m03.pdf, 2004.

[Mas27] H. V. Masters. A study of spelling errors. Ph. D. Thesis, University
of Iowa, 1927. Unpublished.

[MB95] A. Mo�at and T. A. H. Bell. In situ generation of compressed in-
verted �les. Journal of the American Society for Information Science,
46(7):537�550, 1995.

[McC76] E. M. McCreight. A space-economical su�x tree construction algo-
rithm. Journal of Algorithms, 23(2):262�272, 1976.

[Meh84] K. Mehlhorn. Data structures and algorithms 1: sorting and search-
ing. Springer, 1984.

[Mel96] B. Melichar. String matching with k di�erences by �nite automata. In
Proc. 13th International Conference on Pattern Recognition, volume
II., pages 256�260. IEEE Computer Society Press, 1996.

[MF04] G. Manzini and P. Ferragina. Engineering a lightweight su�x array
construction algorithm. Algorithmica, 40(1):33�50, 2004.

[MHM+01] S. Mitarai, M. Hirao, T. Matsumoto, A. Shinohara, M. Takeda, and
S. Arikawa. Compressed pattern matching for SEQUITUR. In Proc.
Data Compression Conference (DCC), pages 469+, Snowbird, UT,
2001. IEEE Computer Society Press.

[Mil05] P. B. Miltersen. Lower bounds on the size of selection and rank
indexes. In Proc. 16th ACM-SIAM Annual Symposium on Discrete
Algorithms (SODA), pages 11�12. SIAM, 2005.

[MM90] U. Manber and G. Myers. Su�x arrays: a new method for on-line
string searches. In Proc. 1st ACM-SIAM Annual Symposium on Dis-
crete Algorithms (SODA), pages 319�327. SIAM, 1990.

[MM91] G. Mehldau and G. Myers. A system for pattern matching appli-
cations on biosequences. Computer Applications in the Biosciences,
9(3):299�314, 1991.

[MM93] U. Manber and G. Myers. Su�x arrays: a new method for on-line
string searches. SIAM Journal on Computing, 22(5):935�948, 1993.

[MN04a] V. Mäkinen and G. Navarro. Compressed compact su�x arrays. In
Proc. 15th Annual Symposium on Combinatorial Pattern Matching
(CPM), LNCS 3109, pages 420�433. Springer, 2004.

228 BIBLIOGRAPHY

[MN04b] V. Mäkinen and G. Navarro. New search algorithms and time/space
tradeo�s for succinct su�x arrays. Technical Report C-2004-20, De-
partment of Computer Science, University of Helsinki, 2004.

[MN05a] M. G. Maaÿ and J. Nowak. Text indexing with errors. Technical
Report TUM-I0503, Fakultät für Informatik, TUMünchen, mar 2005.

[MN05b] M. G. Maaÿ and J. Nowak. Text indexing with errors. In Proc.
16th Annual Symposium on Combinatorial Pattern Matching (CPM),
LNCS 3537, pages 21�32. Springer, 2005.

[MN05c] V. Mäkinen and G. Navarro. Succinct su�x arrays based on run-
length encoding. Nordic Journal of Computing, 12(1):40�66, 2005.

[MN07a] V. Mäkinen and G. Navarro. Implicit compression boosting with
applications to self-indexing. In Proc. 14th Int. Symposium on String
Processing and Information Retrieval (SPIRE), LNCS 4726, pages
214�226. Springer, 2007.

[MN07b] V. Mäkinen and G. Navarro. Rank and select revisited and extended.
Theoretical Computer Science, 387(3):332�347, 2007.

[MN08] V. Mäkinen and G. Navarro. Dynamic entropy-compressed sequences
and full-text indexes. ACM Transactions on Algorithms (TALG),
4(3):article 32, 2008. 38 pages.

[MNF58] G. A. Miller, E. B. Newman, and E. A. Friedman. Length-frequency
statistics for written English. Information and Control, 1:370�389,
1958.

[MNU03] V. Mäkinen, G. Navarro, and E. Ukkonen. Approximate matching of
run-length compressed strings. Algorithmica, 35:347�369, 2003.

[MNU05] V. Mäkinen, G. Navarro, and E. Ukkonen. Transposition invariant
string matching. Journal of Algorithms, 56(2):124�153, 2005.

[MNZ97] E. Moura, G. Navarro, and N. Ziviani. Indexing compressed text.
In Proc. 4th South American Workshop on String Processing, pages
95�111. Carleton University Press, 1997.

[MNZBY00] E. Moura, G. Navarro, N. Ziviani, and R. A. Baeza-Yates. Fast and
�exible word searching on compressed text. ACM Transactions on
Information Systems (TOIS), 18(2):113�139, 2000.

[Mof89] A. Mo�at. Word-based text compression. Software�Practice and Ex-
perience, 19(2):185�198, 1989.

[MP80] W. J. Masek and M. S. Paterson. A faster algorithm for comput-
ing string edit distances. Journal of Computer and System Sciences,
20(1):18�31, 1980.

BIBLIOGRAPHY 229

[MP08] M. A. Maniscalco and S. J. Puglisi. An e�cient, versatile approach
to su�x sorting. ACM Journal of Experimental Algorithmics (JEA),
12:1�23, 2008.

[MR97] J. I. Munro and V. Raman. Succinct representation of balanced paren-
theses, static trees and planar graphs. In Proc. 38th IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pages 118�
126, 1997.

[Mun96] J. I. Munro. Tables. In Proc. 16th Conference on Foundations of
Software Technology and Theoretical Computer Science, pages 37�42,
London, UK, 1996. Springer.

[MW94] U. Manber and S. Wu. GLIMPSE: A tool to search through entire
�le systems. In Proc. USENIX Winter 1994 Technical Conference,
pages 23�32, San Francisco, CA, 1994.

[Mye86] E. W. Myers. Incremental alignment algorithms and their applica-
tions. Report TR-90-25, Department of Computer Science, University
of Arizona, Tucson, AZ, 1986.

[Mye96] E. W. Myers. Approximate matching of network expression with
spacers. Journal of Computational Biology, 3(1):33�51, 1996.

[Mye98] G. Myers. A fast bit-vector algorithm for approximate string match-
ing based on dynamic programming. In Proc. 9th Annual Symposium
on Combinatorial Pattern Matching (CPM), LNCS 1448, pages 1�13.
Springer, 1998.

[Mye99] G. Myers. A fast bit-vector algorithm for approximate string match-
ing based on dynamic programming. The Journal of the ACM,
46(3):395�415, 1999.

[Nav98] G. Navarro. Approximate Text Searching. PhD thesis, Department
of Computer Science, University of Chile, December 1998. ftp://ftp.
dcc.uchile.cl/pub/users/gnavarro/thesis98.ps.gz.

[Nav01a] G. Navarro. A guided tour to approximate string matching. ACM
Computing Surveys, 33(1):31�88, 2001.

[Nav01b] G. Navarro. NR-grep: a fast and �exible pattern matching tool.
Software�Practice and Experience, 31:1265�1312, 2001.

[Nav04] G. Navarro. Indexing text using the Ziv�Lempel trie. Journal of
Discrete Algorithms, 2(1):87�114, 2004.

[NC06] G. Navarro and E. Chávez. A metric index for approximate string
matching. Theoretical Computer Science, 352(1�3):266�279, 2006.

230 BIBLIOGRAPHY

[NGMD05] G. Navarro, Sz. Grabowski, V. Mäkinen, and S. Deorowicz. Improved
time and space complexities for transposition invariant string match-
ing. Technical Report TR/DCC-2005-4, University of Chile, Depart-
ment of Computer Science, 2005. ftp://ftp.dcc.uchile.cl/pub/users/
gnavarro/mnloglogs.ps.gz.

[NM07] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM
Computing Surveys, 39(1):article 2, 2007.

[NMN+00] G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates.
Adding compression to block addressing inverted indexes. Informa-
tion Retrieval, 3(1):49�77, 2000.

[NMW97] C. G. Nevill-Manning and I. H. Witten. Compression and explanation
using hierarchical grammars. The Computer Journal, 40(2/3):103�
116, 1997.

[NR98] G. Navarro and M. Ra�not. A bit-parallel approach to su�x au-
tomata: Fast extended string matching. In Proc. 9th Annual Sympo-
sium on Combinatorial Pattern Matching (CPM), LNCS 1448, pages
14�33. Springer, 1998.

[NR00] G. Navarro and M. Ra�not. Fast and �exible string matching by
combining bit-parallelism and su�x automata. ACM Journal of Ex-
perimental Algorithmics, 5(4), 2000.

[NR02] G. Navarro and M. Ra�not. Flexible Pattern Matching in Strings �
Practical on-line search algorithms for texts and biological sequences.
Cambridge University Press, 2002. ISBN 0-521-81307-7. 280 pages.

[NR03] G. Navarro and M. Ra�not. Fast and simple character classes and
bounded gaps pattern matching, with applications to protein search-
ing. Journal of Computational Biology, 10(6):903�923, 2003.

[NST05] G. Navarro, E. Sutinen, and J. Tarhio. Indexing text with approx-
imate q-grams. Journal of Discrete Algorithms (JDA), 3(2�4):157�
175, 2005.

[NT00] G. Navarro and J. Tarhio. Boyer�Moore string matching over Ziv�
Lempel compressed text. In Proc. 11th Annual Symposium on Combi-
natorial Pattern Matching (CPM), LNCS 1848, pages 166�180, Mon-
treal, Canada, 2000. Springer.

[OS07] D. Okanohara and K. Sadakane. Practical entropy-compressed
rank/select dictionary. In Proc. Workshop on Algorithm Engineer-
ing and Experiments (ALENEX). SIAM, 2007.

[Pag99] R. Pagh. Low redundancy in static dictionaries with O(1) worst case
lookup time. In Proc. 26th Int. Colloquium on Automata, Languages

BIBLIOGRAPHY 231

and Programming (ICALP), LNCS 1644, pages 595�604. Springer,
1999.

[P�at08] M. P�atra³cu. Succincter. In FOCS, pages 305�313. IEEE Computer
Society, 2008.

[P�at09] M. P�atra³cu. A lower bound for succinct rank queries. CoRR,
abs/0907.1103, 2009.

[Pen03] Ch.-L. Peng. An approach for solving the constrained longest com-
mon subsequence problem. Master's thesis, Department of Computer
Science and Engineering, National Sun Yat-sen University, Taiwan,
2003. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/get�le?URN=
etd-0828103-125439&�lename=etd-0828103-125439.pdf.

[PGNS06] R. Przywarski, Sz. Grabowski, G. Navarro, and A. Salinger. FM-
KZ: An even simpler alphabet-independent FM-Index. In Proc. 11th
Prague Stringology Conference (PSC), pages 226�240, 2006.

[PS80] W. Paul and J. Simon. Decision trees and random access machines.
In ZUERICH: Proc. Symp. Logik und Algorithmik, pages 331�340,
1980.

[PT03] H. Peltola and J. Tarhio. Alternative algorithms for bit-parallel string
matching. In Proc. 10th Int. Symposium on String Processing and
Information Retrieval (SPIRE), LNCS 2857, pages 80�94. Springer,
2003.

[PW05] Y. J. Pinzón and S. Wang. Simple algorithm for pattern-matching
with bounded gaps in genomic sequences. In Proc. Int. Conference
of Numerical Analysis and Applied Mathematics (ICNAAM), pages
827�831, 2005.

[Riv77] R. L. Rivest. On the worst case behavior of string searching algo-
rithms. SIAM Journal on Computing, 6(4):669�674, 1977.

[RNO07] L. Russo, G. Navarro, and A. Oliveira. Approximate string match-
ing with Lempel-Ziv compressed indexes. In Proc. 14th Int. Sympo-
sium on String Processing and Information Retrieval (SPIRE), LNCS
4726, pages 265�275. Springer, 2007.

[RNO08a] L. Russo, G. Navarro, and A. Oliveira. Dynamic fully-compressed suf-
�x trees. In Proc. 19th Annual Symposium on Combinatorial Pattern
Matching (CPM), LNCS 5029, pages 191�203, 2008.

[RNO08b] L. Russo, G. Navarro, and A. Oliveira. Fully-compressed su�x trees.
In Proc. 8th Latin American Symposium (LATIN), LNCS 4957, pages
362�373, 2008.

232 BIBLIOGRAPHY

[RRR02] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictio-
naries with applications to encoding k-ary trees and multisets. In
Proc. 13th ACM-SIAM Annual Symposium on Discrete Algorithms
(SODA), pages 233�242. SIAM, 2002.

[RTT02] J. Rautio, J. Tanninen, and J. Tarhio. String matching with stopper
encoding and code splitting. In Proc. 13th Annual Symposium on
Combinatorial Pattern Matching (CPM), LNCS 2373, pages 42�52.
Springer, 2002.

[Rya80] B. Y. Ryabko. Data compression by means of a book stack. Problems
of Information Transmission, 16(4):16�21, 1980.

[Ryt99] W. Rytter. Algorithms on compressed strings and arrays. In Proc.
26th Conference on Current Trends in Theory and Practice of Com-
puter Science (SOFSEM), LNCS 1725, pages 48�65. Springer, 1999.

[Sad00] K. Sadakane. Compressed text databases with e�cient query algo-
rithms based on the compressed su�x array. In Proc. 11th Int. Sym-
posium on Algorithms and Computation (ISAAC), LNCS 1969, pages
410�421. Springer, 2000.

[Sad02] K. Sadakane. Succinct representations of lcp information and im-
provements in the compressed su�x arrays. In Proc. 13th ACM-SIAM
Annual Symposium on Discrete Algorithms (SODA), pages 225�232.
SIAM, 2002.

[Sad07] K. Sadakane. Compressed su�x trees with full functionality. Theo-
retical Computer Science, 41(4):589�607, 2007.

[Sch61] C. Schensted. Largest increasing and decreasing subsequences. Cana-
dian Journal of Mathematics, 13:179�191, 1961.

[Sew06] J. Seward. The bzip2 program. http://www.bzip.org/, 2006.

[SG06] K. Sadakane and R. Grossi. Squeezing succinct data structures into
entropy bounds. In Proc. 17th ACM-SIAM Annual Symposium on
Discrete Algorithms (SODA), pages 1230�1239. ACM Press, 2006.

[SGD05] P. Skibi«ski, Sz. Grabowski, and S. Deorowicz. Revisiting dictionary-
based compression. Software�Practice and Experience, 35(15):1455�
1476, 2005.

[SGS06] J. Swacha, Sz. Grabowski, and P. Skibi«ski. Efektywna reprezen-
tacja dokumentów XML (in Polish). In Badania Operacyjne i Sys-
temowe (BOS 2006), vol. 3, pages 355�366, Szczecin, Poland, 2006.
Akademicka O�cyna Wydawnicza EXIT.

BIBLIOGRAPHY 233

[SGS07] P. Skibi«ski, Sz. Grabowski, and J. Swacha. Fast transform for ef-
fective XML compression. In Proc. 9th International Conference The
Experience of Designing and Application of CAD Systems in Micro-
electronics, pages 323�326, Polyana, Ukraine, 2007.

[SGS08] P. Skibi«ski, Sz. Grabowski, and J. Swacha. E�ective asymmetric
XML compression. Software�Practice and Experience, 38(10):1027�
1047, 2008.

[Shk02] D. Shkarin. PPM: One step to practicality. In Proc. Data Compres-
sion Conference (DCC), pages 202�211, Snowbird, UT, 2002. IEEE
Computer Society Press.

[Sim93] I. Simon. String matching algorithms and automata. In Proc. 1st
South American Workshop on String Processing, pages 151�157, Uni-
versidade Federal de Minas Gerais, Brazil, 1993.

[Smi91] P. D. Smith. Experiments with a very fast substring search algorithm.
Software�Practice and Experience, 21(10):1065�1074, 1991.

[SS01] K. Sadakane and T. Shibuya. Indexing huge genome sequences for
solving various problems. Genome Informatics, 12:175�183, 2001.

[SS07] P. Skibi«ski and J. Swacha. Combining e�cient XML compression
with query processing. In Proc. 11th East European Conference on
Advances in Databases and Information Systems (ADBIS), LNCS
4690, pages 330�342. Springer, 2007.

[SSG08] P. Skibi«ski, J. Swacha, and Sz. Grabowski. A highly e�cient XML
compression scheme for the Web. In Proc. 34th Conference on Cur-
rent Trends in Theory and Practice of Computer Science (SOFSEM),
LNCS 4910, pages 766�777. Springer, 2008.

[ST07] P. Sanders and F. Transier. Intersection in integer inverted in-
dices. In Proc. Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 71�83. SIAM, 2007.

[Ste92] G. A. Stephen. String search. Report TR-92-gas-01, University Col-
lege of North Wales, 1992.

[STSA99] Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. Pattern match-
ing in text compressed by using antidictionaries. In Proc. 10th Annual
Symposium on Combinatorial Pattern Matching (CPM), LNCS 1645,
pages 37�49, Warwick University, UK, 1999. Springer.

[Sun90] D. M. Sunday. A very fast substring search algorithm. Communica-
tions of the ACM, 33(8):132�142, 1990.

234 BIBLIOGRAPHY

[SZM03] W. Sun, N. Zhang, and A. Mukherjee. A dictionary-based multi-
corpora text compression system. In Proc. Data Compression Confer-
ence (DCC), page 448, Snowbird, UT, 2003. IEEE Computer Society
Press.

[Tis08] A. Tiskin. Semi-local string comparison: Algorithmic techniques and
applications. Mathematics in Computer Science, 1(4):571�603, 2008.

[TMK+02] M. Takeda, S. Miyamoto, T. Kida, A. Shinohara, S. Fukumachi,
T. Shinohara, and S. Arikawa. Processing text �les as is: Pattern
matching over compressed tests. In Proc. 9th Int. Symposium on
String Processing and Information Retrieval (SPIRE), LNCS 2476,
pages 170�186. Springer, 2002.

[TP97] J. Tarhio and H. Peltola. String matching in the DNA alphabet.
Software�Practice and Experience, 27(7):851�861, 1997.

[TS08] F. Transier and P. Sanders. Intersection in integer inverted in-
dices. In Proc. Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 3�12. SIAM, 2008.

[Tsa03] Y. T. Tsai. The constrained common subsequence problem. Infor-
mation Processing Letters, 88:173�176, 2003.

[TSM+01] M. Takeda, Y. Shibata, T. Matsumoto, T. Kida, A. Shinohara,
S. Fukamachi, T. Shinohara, and S. Arikawa. Speeding up string pat-
tern matching by text compression: The dawn of a new era. Trans-
actions of Information Processing Society of Japan, 42(3):370�384,
2001.

[Ukk85a] E. Ukkonen. Algorithms for approximate string matching. Informa-
tion and Control, 64(1�3):100�118, 1985.

[Ukk85b] E. Ukkonen. Finding approximate patterns in strings. Journal of
Algorithms, 6(1�3):132�137, 1985.

[Ukk95] E. Ukkonen. On-line construction of su�x trees. Algorithmica,
14(3):249�260, 1995.

[vEBKZ77] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implemen-
tation of an e�cient priority queue. Mathematical Systems Theory,
10:99�127, 1977.

[Vig08] S. Vigna. Broadword implementation of rank/select queries. In Proc.
7th Workshop on E�cient and Experimental Algorithms (WEA),
LNCS 5038, pages 154�168. Springer, 2008.

[Wan03] R. Wan. Browsing and Searching Compressed Documents. Ph. D.
Thesis, University of Melbourne, Australia, 2003.

BIBLIOGRAPHY 235

[WC76] C. K. Wong and A. K. Chandra. Bounds for the string editing prob-
lem. The Journal of the ACM, 23(1):13�16, 1976.

[Wei73] P. Weiner. Linear pattern matching algorithm. In Proc. 14th Annual
IEEE Symposium on Switching and Automata Theory, pages 1�11,
Washington, DC, 1973.

[WF74] R. A. Wagner and M. Fischer. The string-to-string correction prob-
lem. The Journal of the ACM, 21(1):168�173, 1974.

[WM92a] S. Wu and U. Manber. Agrep � a fast approximate pattern-matching
tool. In Proc. USENIX Winter 1992 Technical Conference, pages
153�162, San Francisco, CA, 1992.

[WM92b] S. Wu and U. Manber. Fast text searching allowing errors. Commu-
nications of the ACM, 35(10):83�91, 1992.

[WM94] S. Wu and U. Manber. A fast algorithm for multi-pattern searching.
Report TR-94-17, Department of Computer Science, University of
Arizona, Tucson, AZ, 1994.

[WMB99] I. H. Witten, A. Mo�at, and T. C. Bell. Managing Gigabytes: Com-
pressing and Indexing Documents and Images. Morgan Kaufmann
Publishers, San Francisco, CA, 1999.

[Yao79] A. C. Yao. The complexity of pattern matching for a random string.
SIAM Journal on Computing, 8(3):368�387, 1979.

[YC08] I.-H. Yang and Y.-C. Chen. Fast algorithms for the constrained
longest increasing subsequence problems. In Proc. 25th Workshop
on Combinatorial Mathematics and Computation Theory, pages 226�
231, 2008.

[Zec72] E. Zeckendorf. Représentation des nombres naturels par une somme
de nombres de Fibonacci ou de nombres Lucas. Bulletin de la Société
Royale des Sciences de Liège, 41:179�182, 1972.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, 23(3):337�
343, 1977.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via
variable-rate coding. IEEE Transactions on Information Theory,
24(5):530�536, 1978.

List of Symbols and Abbreviations

Abbreviation Description
T text
P pattern
n, m text length, pattern length
Σ alphabet
σ alphabet size
occ number of pattern occurrences
w machine word size, in bits
log n binary logarithm of n
r number of patterns in multiple pattern matching
D binary state vector (in bit-parallel algorithms, e.g. Shift-Or)
B preprocessing table with σ bit-vectors (in bit-parallel algo-

rithms, e.g. Shift-Or)
<<, >> bit-wise shift to left, shift to right, both with zero padding
&, |, ∼, ∧ bit-wise and, or, not, xor
KMP Knuth�Morris�Pratt exact matching algorithm
BMH Boyer�Moore�Horspool exact matching algorithm
NFA non-deterministic �nite automaton
BNDM backward non-deterministic DAWG matching
AC Aho�Corasick multiple matching algorithm
AOSO average-optimal Shift-Or algorithm
FAOSO fast variant of the AOSO algorithm

ed(A,B) edit (Levenshtein) distance between sequences A and B
dID(A,B) indel distance between sequences A and B
dH(A,B) Hamming distance between sequences A and B
id(A, B) the minimum number of symbols inserted to sequence A to

transform it into sequence B
LCS longest common subsequence problem
LCTS longest common transposition-invariant subsequence prob-

lem

236

237

Abbreviation Description
R number of all matching character pairs in LCS and related

algorithms
` length of the output sequence in LCS and related algorithms

MB molecular biology
MIR music information retrieval
α maximum allowed gap size
δ maximum allowed error di�erence on individual symbol
γ maximum allowed sum of symbol di�erences for the whole

pattern

ETDC end-tagged dense code
(s, c)-DC dense code with parameters: stoppers (s), continuers (c)
Dict dictionary of q-grams

BWT Burrows�Wheleer transform
PPM prediction by partial matching compression algorithm
M conceptual matrix of sorted su�xes of the text
T bwt output of the Burrows�Wheeler transform applied to text T
Occ(X, c, i) number of occurrences of symbol c in the pre�x X[1 . . . i]
C array of size σ storing the counts of occurrences of alphabet

symbols in text T
rank(V, b, i) number of occurrences of binary symbol b in binary sequence

V [1 . . . i]
select(V, b, i) index j such that rank(V, b, i) = j for a binary sequence V
selectNext(V, b, i) index j of the next occurrence of binary symbol b in binary

sequence V [i . . . n]
Hk(T) order-k empirical entropy of text T
T ′ Hu�man-compressed T (binary stream)
B (T ′)bwt (only in Chap. 5)
n′ size of the array B = (T ′)bwt, in bits
Bh auxiliary bit array of size n′ for signalling codeword bound-

aries in T ′

A′ su�x array for T ′

TS , ST , S auxiliary arrays for locate and display in the FM-Hu�man
index

l, r boundaries of the text area to extract in display queries
L length of the text excerpt in display queries; L = r − l + 1

List of Figures

1.1 BMH example . 15
1.2 Shift-Or example . 20
1.3 AOSO example . 23
1.4 AC-automaton example . 30

2.1 Dynamic programming for Levenshtein distance calculation 46
2.2 An NFA for recognizing the pattern �ROSES� with at most two Lev-

enshtein errors . 51
2.3 LCTS, % matches vs. % transpositions (transpositions sorted by fre-

quency) . 72
2.4 LCTS, overall processing time of the hybrid algorithm with varying

threshold of the minimal number of matches in transpositions handled
by the HS component. 73

2.5 LCTS, overall processing time of the hybrid algorithm with varying
threshold of the total percentage of matches handled by the HS com-
ponent. 73

3.1 Row-wise SPD for (δ, α)-matching, O(
√

δn) time preprocessing 89
3.2 (δ, α)-matching. Tiling the dynamic programming matrix with w × 1

vectors (w = 8). 102
3.3 (δ, γ, α)-matching. Tiling the dynamic programming matrix with C =

bw/(` + 1)c × 1 vectors (C = 8). 106
3.4 A building block for a systolic array detecting δ-matches with α-bounded

gaps. 113
3.5 Running times for (δ, α)-matching, in seconds 126
3.6 Running times for transposition invariant (δ, α)-matching, in seconds . 127
3.7 Running times for (δ, γ, α)-matching, in seconds 129

5.1 CSA example. T = tete-a-tete$. 164
5.2 BWT example. T = BABOON$. 165
5.3 Comparison of di�erent methods to solve rank 176

238

LIST OF FIGURES 239

5.4 (Left) Comparison of di�erent methods to solve select by binary search.
(Right) comparison of di�erent space overheads for select based on
binary search . 177

5.5 Comparison of Clark's select on di�erent densities and two binary
search based implementations using di�erent space overheads 179

5.6 (Left) Search time as a function of the pattern length. (Right) Average
search time per character as a function of the size of the index. 199

5.7 Time to report the positions of the occurrences as a function of the size
of the index . 200

5.8 (Left) Time to show the �rst character of a text context around the po-
sitions of the occurrences as a function of the size of the index. (Right)
Time per character displayed around an occurrence and space for each
index. 201

List of Tables

1.1 Exact matching. Searching speed in megabytes per second for di�erent
algorithms on Pentium4. 35

1.2 Exact matching. Searching speed in megabytes per second for di�erent
algorithms on UltraSPARC IIIi. Left: DNA; right: natural language. . 35

1.3 Searching speed in megabytes per second for di�erent algorithms on
Core 2 Duo . 37

1.4 k-mismatches. Searching speed in megabytes per second for Average-
Optimal Shift-Add on Core 2 Duo. 38

1.5 Multiple pattern search. Searching speed in megabytes per second for
di�erent algorithms on Intel Core 2 Duo. 39

2.1 LCTS, MUSIC, 32-bit implementation 74
2.2 LCTS, MUSIC, 64-bit implementation 74
2.3 LCTS, RANDOM-128, 64-bit implementation 74
2.4 LCTS, GAUSS-128, 64-bit implementation 75

4.1 Comparison of compression ratios . 148
4.2 Dictionary sizes and the numbers of unique q-grams for various �les . . 148
4.3 The e�ect of varying q on the dictionary size and the overall compres-

sion (Dickens/ETDC) . 148
4.4 Comparison of decompression times . 149
4.5 Search times in seconds for short and long patterns 150
4.6 Denser encoding. Comparison of compression ratios in word based

schemes. 152
4.7 Denser encoding. Comparison of compression ratios in q-gram based

schemes. 153

5.1 (Top) Space requirement of FM-Hu�man for di�erent values of k. (Bot-
tom) Detailed comparison of k = 2 versus k = 4. 197

240

Summary

The presented dissertation focuses on various exact and approximate match-
ing problems for textual data. Text should be understood rather broadly,
including natural language, molecular biology and music information re-
trieval data.

The work consists of �ve chapters, each dedicated to a separate problem.
In the order of presentation, they deal with exact string matching, approx-
imate string matching, matching with gaps (which could be considered a
subclass of approximate string matching problems but the amount of con-
tained material should justify a separate chapter), online compressed search
and compressed full-text indexes. The author contributed to each of those
research areas. Each chapter, however, starts with background presentation
to place the author's achievements in proper context.

Many of the algorithms proposed in the dissertation are based on bit-
parallelism, i.e., a modern technique of making use of individual bits in a
CPU word. In particular, two new bit-parallel techniques have been pre-
sented, one for e�cient matching in the average case, the other to reduce
time complexities in the worst case of bit-parallel algorithms making use on
counters. Those are rather general techniques and they have been success-
fully applied for multiple known string matching problems.

It has been shown that the problems of matching with gaps can be
attacked from very di�erent angles, and the arsenal of existing techniques
in this area has been signi�cantly expanded. The new results comprise
the algorithmic techniques of bit-parallelism, sparse dynamic programming,
compact bit-parallel NFA simulations and �ltering.

New algorithms are also presented for full-text searching in compressed
data; they are both simple and e�cient.

Apart from theoretical analyses, most of the proposed algorithms have
been experimentally validated on modern hardware and the achieved results
usually place them among very competitive ones.

241

Charakterystyka zawodowa autora

Szymon Grabowski urodziª si¦ w roku 1973 w Kole. W 1996 r. uko«czyª
studia na Wydziale Matematyki, Fizyki i Chemii Uniwersytetu �ódzkiego
i uzyskaª tytuª magistra informatyka. Nast¦pnym etapem jego kariery za-
wodowej byªy studia doktoranckie na Wydziale Elektrotechniki i Elektro-
niki Politechniki �ódzkiej, a tak»e praca na stanowisku asystenta w Kate-
drze Informatyki Stosowanej. Tematyka badawcza jego pracy doktorskiej
dotyczyªa rozpoznawania obrazów, a ±ci±lej klasy�katorów typu najbli»szy
s¡siad. W roku 2003 Sz. Grabowski obroniª z wyró»nieniem na Akademii
Górniczo-Hutniczej w Krakowie prac¦ doktorsk¡ nt. �Konstrukcja klasy�ka-
torów minimalnoodlegªo±ciowych o strukturze sieciowej�. W grudniu 2003 r.
zostaª powoªany na stanowisko adiunkta w Katedrze Informatyki Stosowanej
P�.

Po obronie doktoratu autor rozprawy zmieniª swoj¡ podstawow¡ tema-
tyk¦ badawcz¡, koncentruj¡c si¦ na algorytmach tekstowych, cz¦sto z wy-
korzystaniem kompresji danych i technik tzw. równolegªo±ci bitowej. Kon-
kretne problemy, którymi si¦ zajmowaª, dotycz¡ m. in. wyszukiwania przy-
bli»onego, skompresowanych indeksów tekstowych i kompresji XML.

Szymon Grabowski jest autorem lub wspóªautorem okoªo 80 artykuªów
naukowych, w tym 14 z tzw. listy �ladel�jskiej. Na konferencji mi¦dzynaro-
dowej String Processing and Information Retrieval (SPIRE) w roku 2006
otrzymaª nagrod¦ za najlepszy artykuª (wraz ze wspóªautorem, Kimmo
Fredrikssonem). Uczestniczyª w dwóch projektach badawczych (NATO i
MNiSW), w ramach pierwszego z nich odbyª w roku 2001 krótki sta» zagra-
niczny w USA. Od sierpnia 2008 r. jest czªonkiem kolegium redakcyjnego
pisma International Journal of Computer Mathematics. Byª recenzentem
pracy doktorskiej Jana Lánský'ego z Uniwersytetu Karola w Pradze.

Dziaªalno±¢ dydaktyczna autora rozprawy obejmuje algorytmik¦, rozpo-
znawanie obrazów i przedmioty zwi¡zane z programowaniem komputerów.

243

